Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging
Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to...
Gespeichert in:
Veröffentlicht in: | Aging cell 2024-06, Vol.23 (6), p.e14015-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e14015 |
container_title | Aging cell |
container_volume | 23 |
creator | Qiao, Yujia (Susanna) Santanasto, Adam J. Coen, Paul M. Cawthon, Peggy M. Cummings, Steven R. Forman, Daniel E. Goodpaster, Bret H. Harezlak, Jaroslaw Hawkins, Marquis Kritchevsky, Stephen B. Nicklas, Barbara J. Toledo, Frederico G. S. Toto, Pamela E. Newman, Anne B. Glynn, Nancy W. |
description | Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual‐paced 400‐m walk wearing a wrist‐worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence‐versus‐time trajectory from their maximal cadence. Complex I&II‐supported maximal oxidative phosphorylation (max OXPHOS) and complex I&II‐supported electron transfer system (max ETS) were quantified ex vivo using high‐resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7‐day free‐living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.
Among 795 older adults from the Study of Muscle, Mobility and Aging, we found that each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults. |
doi_str_mv | 10.1111/acel.14015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066492036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4495-81ec0f474c8fb282637846b26e5afa9bcad072d527aea2230ac8f156fd4d83d3</originalsourceid><addsrcrecordid>eNp9kbuO1DAUQCMEYpeFhg9AlmgQYhY_EjuhQaPR8pBmRcH21o1zE7wk9mAnrNLR0fKNfAmeyTICCtxcS_fo3FeWPWb0nKX3Egz25yynrLiTnbJc5atKcXn3-GflSfYgxmtKmaqouJ-dCFXmolTVafZ9HaM3FkbrXSQ1jjeIjsTP2OMIPRmmaHok6DB0OFoTCbiGgEkVMfgBxzD__PajhogN2WFofRjAGSRtEnZQ296O8yvycZyamfiWXB50L8ilX1IH27qzrnuY3Wuhj_joNp5lV28urjbvVtsPb99v1tuVyfOqWJUMDW3TWKZsa15yuZ9E1lxiAS1UtYGGKt4UXAEC54JCAlkh2yZvStGIs-z1ot1N9YCNQTcG6PUu2AHCrD1Y_XfG2U-681912rOUQqpkeHZrCP7LhHHUg41pHT049FPUvFQlZZJykdCn_6DXfgoujacFlTKvOBUyUc8XygQfY8D22A2j-7JM7--rD_dN8JM_-z-ivw-aALYAN7bH-T8qvd5cbBfpL2TxtJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066492036</pqid></control><display><type>article</type><title>Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Qiao, Yujia (Susanna) ; Santanasto, Adam J. ; Coen, Paul M. ; Cawthon, Peggy M. ; Cummings, Steven R. ; Forman, Daniel E. ; Goodpaster, Bret H. ; Harezlak, Jaroslaw ; Hawkins, Marquis ; Kritchevsky, Stephen B. ; Nicklas, Barbara J. ; Toledo, Frederico G. S. ; Toto, Pamela E. ; Newman, Anne B. ; Glynn, Nancy W.</creator><creatorcontrib>Qiao, Yujia (Susanna) ; Santanasto, Adam J. ; Coen, Paul M. ; Cawthon, Peggy M. ; Cummings, Steven R. ; Forman, Daniel E. ; Goodpaster, Bret H. ; Harezlak, Jaroslaw ; Hawkins, Marquis ; Kritchevsky, Stephen B. ; Nicklas, Barbara J. ; Toledo, Frederico G. S. ; Toto, Pamela E. ; Newman, Anne B. ; Glynn, Nancy W.</creatorcontrib><description>Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual‐paced 400‐m walk wearing a wrist‐worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence‐versus‐time trajectory from their maximal cadence. Complex I&II‐supported maximal oxidative phosphorylation (max OXPHOS) and complex I&II‐supported electron transfer system (max ETS) were quantified ex vivo using high‐resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7‐day free‐living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.
Among 795 older adults from the Study of Muscle, Mobility and Aging, we found that each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.</description><identifier>ISSN: 1474-9718</identifier><identifier>ISSN: 1474-9726</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.14015</identifier><identifier>PMID: 37843879</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Accelerometers ; Accelerometry ; Adenosine triphosphate ; Aged ; Aging ; Aging - metabolism ; Aging - physiology ; Biopsy ; Body mass index ; Cytochrome ; Electron transfer ; Energy Metabolism - physiology ; fatigability ; fatigue ; Fatigue - metabolism ; Fatigue - physiopathology ; Female ; gait ; Humans ; Magnetic resonance spectroscopy ; Male ; Middle Aged ; mitochondria ; Mobility ; Muscle contraction ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Older people ; Oxidative phosphorylation ; Phosphorylation ; Respiration ; Skeletal muscle ; Special Section “Aging Cohorts: Resources for Translational Research” ; Spectrum analysis ; Variance analysis ; Wrist</subject><ispartof>Aging cell, 2024-06, Vol.23 (6), p.e14015-n/a</ispartof><rights>2023 The Authors. published by Anatomical Society and John Wiley & Sons Ltd.</rights><rights>2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4495-81ec0f474c8fb282637846b26e5afa9bcad072d527aea2230ac8f156fd4d83d3</citedby><cites>FETCH-LOGICAL-c4495-81ec0f474c8fb282637846b26e5afa9bcad072d527aea2230ac8f156fd4d83d3</cites><orcidid>0000-0001-7356-3320 ; 0000-0002-6912-2909 ; 0000-0003-2265-0162 ; 0000-0002-2805-2115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166367/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166367/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37843879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Yujia (Susanna)</creatorcontrib><creatorcontrib>Santanasto, Adam J.</creatorcontrib><creatorcontrib>Coen, Paul M.</creatorcontrib><creatorcontrib>Cawthon, Peggy M.</creatorcontrib><creatorcontrib>Cummings, Steven R.</creatorcontrib><creatorcontrib>Forman, Daniel E.</creatorcontrib><creatorcontrib>Goodpaster, Bret H.</creatorcontrib><creatorcontrib>Harezlak, Jaroslaw</creatorcontrib><creatorcontrib>Hawkins, Marquis</creatorcontrib><creatorcontrib>Kritchevsky, Stephen B.</creatorcontrib><creatorcontrib>Nicklas, Barbara J.</creatorcontrib><creatorcontrib>Toledo, Frederico G. S.</creatorcontrib><creatorcontrib>Toto, Pamela E.</creatorcontrib><creatorcontrib>Newman, Anne B.</creatorcontrib><creatorcontrib>Glynn, Nancy W.</creatorcontrib><title>Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual‐paced 400‐m walk wearing a wrist‐worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence‐versus‐time trajectory from their maximal cadence. Complex I&II‐supported maximal oxidative phosphorylation (max OXPHOS) and complex I&II‐supported electron transfer system (max ETS) were quantified ex vivo using high‐resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7‐day free‐living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.
Among 795 older adults from the Study of Muscle, Mobility and Aging, we found that each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.</description><subject>Accelerometers</subject><subject>Accelerometry</subject><subject>Adenosine triphosphate</subject><subject>Aged</subject><subject>Aging</subject><subject>Aging - metabolism</subject><subject>Aging - physiology</subject><subject>Biopsy</subject><subject>Body mass index</subject><subject>Cytochrome</subject><subject>Electron transfer</subject><subject>Energy Metabolism - physiology</subject><subject>fatigability</subject><subject>fatigue</subject><subject>Fatigue - metabolism</subject><subject>Fatigue - physiopathology</subject><subject>Female</subject><subject>gait</subject><subject>Humans</subject><subject>Magnetic resonance spectroscopy</subject><subject>Male</subject><subject>Middle Aged</subject><subject>mitochondria</subject><subject>Mobility</subject><subject>Muscle contraction</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Older people</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Respiration</subject><subject>Skeletal muscle</subject><subject>Special Section “Aging Cohorts: Resources for Translational Research”</subject><subject>Spectrum analysis</subject><subject>Variance analysis</subject><subject>Wrist</subject><issn>1474-9718</issn><issn>1474-9726</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kbuO1DAUQCMEYpeFhg9AlmgQYhY_EjuhQaPR8pBmRcH21o1zE7wk9mAnrNLR0fKNfAmeyTICCtxcS_fo3FeWPWb0nKX3Egz25yynrLiTnbJc5atKcXn3-GflSfYgxmtKmaqouJ-dCFXmolTVafZ9HaM3FkbrXSQ1jjeIjsTP2OMIPRmmaHok6DB0OFoTCbiGgEkVMfgBxzD__PajhogN2WFofRjAGSRtEnZQ296O8yvycZyamfiWXB50L8ilX1IH27qzrnuY3Wuhj_joNp5lV28urjbvVtsPb99v1tuVyfOqWJUMDW3TWKZsa15yuZ9E1lxiAS1UtYGGKt4UXAEC54JCAlkh2yZvStGIs-z1ot1N9YCNQTcG6PUu2AHCrD1Y_XfG2U-681912rOUQqpkeHZrCP7LhHHUg41pHT049FPUvFQlZZJykdCn_6DXfgoujacFlTKvOBUyUc8XygQfY8D22A2j-7JM7--rD_dN8JM_-z-ivw-aALYAN7bH-T8qvd5cbBfpL2TxtJ4</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Qiao, Yujia (Susanna)</creator><creator>Santanasto, Adam J.</creator><creator>Coen, Paul M.</creator><creator>Cawthon, Peggy M.</creator><creator>Cummings, Steven R.</creator><creator>Forman, Daniel E.</creator><creator>Goodpaster, Bret H.</creator><creator>Harezlak, Jaroslaw</creator><creator>Hawkins, Marquis</creator><creator>Kritchevsky, Stephen B.</creator><creator>Nicklas, Barbara J.</creator><creator>Toledo, Frederico G. S.</creator><creator>Toto, Pamela E.</creator><creator>Newman, Anne B.</creator><creator>Glynn, Nancy W.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7356-3320</orcidid><orcidid>https://orcid.org/0000-0002-6912-2909</orcidid><orcidid>https://orcid.org/0000-0003-2265-0162</orcidid><orcidid>https://orcid.org/0000-0002-2805-2115</orcidid></search><sort><creationdate>202406</creationdate><title>Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging</title><author>Qiao, Yujia (Susanna) ; Santanasto, Adam J. ; Coen, Paul M. ; Cawthon, Peggy M. ; Cummings, Steven R. ; Forman, Daniel E. ; Goodpaster, Bret H. ; Harezlak, Jaroslaw ; Hawkins, Marquis ; Kritchevsky, Stephen B. ; Nicklas, Barbara J. ; Toledo, Frederico G. S. ; Toto, Pamela E. ; Newman, Anne B. ; Glynn, Nancy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4495-81ec0f474c8fb282637846b26e5afa9bcad072d527aea2230ac8f156fd4d83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Accelerometry</topic><topic>Adenosine triphosphate</topic><topic>Aged</topic><topic>Aging</topic><topic>Aging - metabolism</topic><topic>Aging - physiology</topic><topic>Biopsy</topic><topic>Body mass index</topic><topic>Cytochrome</topic><topic>Electron transfer</topic><topic>Energy Metabolism - physiology</topic><topic>fatigability</topic><topic>fatigue</topic><topic>Fatigue - metabolism</topic><topic>Fatigue - physiopathology</topic><topic>Female</topic><topic>gait</topic><topic>Humans</topic><topic>Magnetic resonance spectroscopy</topic><topic>Male</topic><topic>Middle Aged</topic><topic>mitochondria</topic><topic>Mobility</topic><topic>Muscle contraction</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Older people</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Respiration</topic><topic>Skeletal muscle</topic><topic>Special Section “Aging Cohorts: Resources for Translational Research”</topic><topic>Spectrum analysis</topic><topic>Variance analysis</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Yujia (Susanna)</creatorcontrib><creatorcontrib>Santanasto, Adam J.</creatorcontrib><creatorcontrib>Coen, Paul M.</creatorcontrib><creatorcontrib>Cawthon, Peggy M.</creatorcontrib><creatorcontrib>Cummings, Steven R.</creatorcontrib><creatorcontrib>Forman, Daniel E.</creatorcontrib><creatorcontrib>Goodpaster, Bret H.</creatorcontrib><creatorcontrib>Harezlak, Jaroslaw</creatorcontrib><creatorcontrib>Hawkins, Marquis</creatorcontrib><creatorcontrib>Kritchevsky, Stephen B.</creatorcontrib><creatorcontrib>Nicklas, Barbara J.</creatorcontrib><creatorcontrib>Toledo, Frederico G. S.</creatorcontrib><creatorcontrib>Toto, Pamela E.</creatorcontrib><creatorcontrib>Newman, Anne B.</creatorcontrib><creatorcontrib>Glynn, Nancy W.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Yujia (Susanna)</au><au>Santanasto, Adam J.</au><au>Coen, Paul M.</au><au>Cawthon, Peggy M.</au><au>Cummings, Steven R.</au><au>Forman, Daniel E.</au><au>Goodpaster, Bret H.</au><au>Harezlak, Jaroslaw</au><au>Hawkins, Marquis</au><au>Kritchevsky, Stephen B.</au><au>Nicklas, Barbara J.</au><au>Toledo, Frederico G. S.</au><au>Toto, Pamela E.</au><au>Newman, Anne B.</au><au>Glynn, Nancy W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2024-06</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>e14015</spage><epage>n/a</epage><pages>e14015-n/a</pages><issn>1474-9718</issn><issn>1474-9726</issn><eissn>1474-9726</eissn><abstract>Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual‐paced 400‐m walk wearing a wrist‐worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence‐versus‐time trajectory from their maximal cadence. Complex I&II‐supported maximal oxidative phosphorylation (max OXPHOS) and complex I&II‐supported electron transfer system (max ETS) were quantified ex vivo using high‐resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7‐day free‐living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.
Among 795 older adults from the Study of Muscle, Mobility and Aging, we found that each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>37843879</pmid><doi>10.1111/acel.14015</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7356-3320</orcidid><orcidid>https://orcid.org/0000-0002-6912-2909</orcidid><orcidid>https://orcid.org/0000-0003-2265-0162</orcidid><orcidid>https://orcid.org/0000-0002-2805-2115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-9718 |
ispartof | Aging cell, 2024-06, Vol.23 (6), p.e14015-n/a |
issn | 1474-9718 1474-9726 1474-9726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166367 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Accelerometers Accelerometry Adenosine triphosphate Aged Aging Aging - metabolism Aging - physiology Biopsy Body mass index Cytochrome Electron transfer Energy Metabolism - physiology fatigability fatigue Fatigue - metabolism Fatigue - physiopathology Female gait Humans Magnetic resonance spectroscopy Male Middle Aged mitochondria Mobility Muscle contraction Muscle, Skeletal - metabolism Musculoskeletal system Older people Oxidative phosphorylation Phosphorylation Respiration Skeletal muscle Special Section “Aging Cohorts: Resources for Translational Research” Spectrum analysis Variance analysis Wrist |
title | Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Associations%20between%20skeletal%20muscle%20energetics%20and%20accelerometry%E2%80%90based%20performance%20fatigability:%20Study%20of%20Muscle,%20Mobility%20and%20Aging&rft.jtitle=Aging%20cell&rft.au=Qiao,%20Yujia%20(Susanna)&rft.date=2024-06&rft.volume=23&rft.issue=6&rft.spage=e14015&rft.epage=n/a&rft.pages=e14015-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.14015&rft_dat=%3Cproquest_pubme%3E3066492036%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066492036&rft_id=info:pmid/37843879&rfr_iscdi=true |