Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging

Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2024-06, Vol.23 (6), p.e14015-n/a
Hauptverfasser: Qiao, Yujia (Susanna), Santanasto, Adam J., Coen, Paul M., Cawthon, Peggy M., Cummings, Steven R., Forman, Daniel E., Goodpaster, Bret H., Harezlak, Jaroslaw, Hawkins, Marquis, Kritchevsky, Stephen B., Nicklas, Barbara J., Toledo, Frederico G. S., Toto, Pamela E., Newman, Anne B., Glynn, Nancy W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e14015
container_title Aging cell
container_volume 23
creator Qiao, Yujia (Susanna)
Santanasto, Adam J.
Coen, Paul M.
Cawthon, Peggy M.
Cummings, Steven R.
Forman, Daniel E.
Goodpaster, Bret H.
Harezlak, Jaroslaw
Hawkins, Marquis
Kritchevsky, Stephen B.
Nicklas, Barbara J.
Toledo, Frederico G. S.
Toto, Pamela E.
Newman, Anne B.
Glynn, Nancy W.
description Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual‐paced 400‐m walk wearing a wrist‐worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence‐versus‐time trajectory from their maximal cadence. Complex I&II‐supported maximal oxidative phosphorylation (max OXPHOS) and complex I&II‐supported electron transfer system (max ETS) were quantified ex vivo using high‐resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7‐day free‐living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults. Among 795 older adults from the Study of Muscle, Mobility and Aging, we found that each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.
doi_str_mv 10.1111/acel.14015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066492036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4495-81ec0f474c8fb282637846b26e5afa9bcad072d527aea2230ac8f156fd4d83d3</originalsourceid><addsrcrecordid>eNp9kbuO1DAUQCMEYpeFhg9AlmgQYhY_EjuhQaPR8pBmRcH21o1zE7wk9mAnrNLR0fKNfAmeyTICCtxcS_fo3FeWPWb0nKX3Egz25yynrLiTnbJc5atKcXn3-GflSfYgxmtKmaqouJ-dCFXmolTVafZ9HaM3FkbrXSQ1jjeIjsTP2OMIPRmmaHok6DB0OFoTCbiGgEkVMfgBxzD__PajhogN2WFofRjAGSRtEnZQ296O8yvycZyamfiWXB50L8ilX1IH27qzrnuY3Wuhj_joNp5lV28urjbvVtsPb99v1tuVyfOqWJUMDW3TWKZsa15yuZ9E1lxiAS1UtYGGKt4UXAEC54JCAlkh2yZvStGIs-z1ot1N9YCNQTcG6PUu2AHCrD1Y_XfG2U-681912rOUQqpkeHZrCP7LhHHUg41pHT049FPUvFQlZZJykdCn_6DXfgoujacFlTKvOBUyUc8XygQfY8D22A2j-7JM7--rD_dN8JM_-z-ivw-aALYAN7bH-T8qvd5cbBfpL2TxtJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066492036</pqid></control><display><type>article</type><title>Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Qiao, Yujia (Susanna) ; Santanasto, Adam J. ; Coen, Paul M. ; Cawthon, Peggy M. ; Cummings, Steven R. ; Forman, Daniel E. ; Goodpaster, Bret H. ; Harezlak, Jaroslaw ; Hawkins, Marquis ; Kritchevsky, Stephen B. ; Nicklas, Barbara J. ; Toledo, Frederico G. S. ; Toto, Pamela E. ; Newman, Anne B. ; Glynn, Nancy W.</creator><creatorcontrib>Qiao, Yujia (Susanna) ; Santanasto, Adam J. ; Coen, Paul M. ; Cawthon, Peggy M. ; Cummings, Steven R. ; Forman, Daniel E. ; Goodpaster, Bret H. ; Harezlak, Jaroslaw ; Hawkins, Marquis ; Kritchevsky, Stephen B. ; Nicklas, Barbara J. ; Toledo, Frederico G. S. ; Toto, Pamela E. ; Newman, Anne B. ; Glynn, Nancy W.</creatorcontrib><description>Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual‐paced 400‐m walk wearing a wrist‐worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence‐versus‐time trajectory from their maximal cadence. Complex I&amp;II‐supported maximal oxidative phosphorylation (max OXPHOS) and complex I&amp;II‐supported electron transfer system (max ETS) were quantified ex vivo using high‐resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7‐day free‐living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults. Among 795 older adults from the Study of Muscle, Mobility and Aging, we found that each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.</description><identifier>ISSN: 1474-9718</identifier><identifier>ISSN: 1474-9726</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.14015</identifier><identifier>PMID: 37843879</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Accelerometers ; Accelerometry ; Adenosine triphosphate ; Aged ; Aging ; Aging - metabolism ; Aging - physiology ; Biopsy ; Body mass index ; Cytochrome ; Electron transfer ; Energy Metabolism - physiology ; fatigability ; fatigue ; Fatigue - metabolism ; Fatigue - physiopathology ; Female ; gait ; Humans ; Magnetic resonance spectroscopy ; Male ; Middle Aged ; mitochondria ; Mobility ; Muscle contraction ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Older people ; Oxidative phosphorylation ; Phosphorylation ; Respiration ; Skeletal muscle ; Special Section “Aging Cohorts: Resources for Translational Research” ; Spectrum analysis ; Variance analysis ; Wrist</subject><ispartof>Aging cell, 2024-06, Vol.23 (6), p.e14015-n/a</ispartof><rights>2023 The Authors. published by Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Aging Cell published by Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4495-81ec0f474c8fb282637846b26e5afa9bcad072d527aea2230ac8f156fd4d83d3</citedby><cites>FETCH-LOGICAL-c4495-81ec0f474c8fb282637846b26e5afa9bcad072d527aea2230ac8f156fd4d83d3</cites><orcidid>0000-0001-7356-3320 ; 0000-0002-6912-2909 ; 0000-0003-2265-0162 ; 0000-0002-2805-2115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166367/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166367/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37843879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Yujia (Susanna)</creatorcontrib><creatorcontrib>Santanasto, Adam J.</creatorcontrib><creatorcontrib>Coen, Paul M.</creatorcontrib><creatorcontrib>Cawthon, Peggy M.</creatorcontrib><creatorcontrib>Cummings, Steven R.</creatorcontrib><creatorcontrib>Forman, Daniel E.</creatorcontrib><creatorcontrib>Goodpaster, Bret H.</creatorcontrib><creatorcontrib>Harezlak, Jaroslaw</creatorcontrib><creatorcontrib>Hawkins, Marquis</creatorcontrib><creatorcontrib>Kritchevsky, Stephen B.</creatorcontrib><creatorcontrib>Nicklas, Barbara J.</creatorcontrib><creatorcontrib>Toledo, Frederico G. S.</creatorcontrib><creatorcontrib>Toto, Pamela E.</creatorcontrib><creatorcontrib>Newman, Anne B.</creatorcontrib><creatorcontrib>Glynn, Nancy W.</creatorcontrib><title>Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual‐paced 400‐m walk wearing a wrist‐worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence‐versus‐time trajectory from their maximal cadence. Complex I&amp;II‐supported maximal oxidative phosphorylation (max OXPHOS) and complex I&amp;II‐supported electron transfer system (max ETS) were quantified ex vivo using high‐resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7‐day free‐living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults. Among 795 older adults from the Study of Muscle, Mobility and Aging, we found that each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.</description><subject>Accelerometers</subject><subject>Accelerometry</subject><subject>Adenosine triphosphate</subject><subject>Aged</subject><subject>Aging</subject><subject>Aging - metabolism</subject><subject>Aging - physiology</subject><subject>Biopsy</subject><subject>Body mass index</subject><subject>Cytochrome</subject><subject>Electron transfer</subject><subject>Energy Metabolism - physiology</subject><subject>fatigability</subject><subject>fatigue</subject><subject>Fatigue - metabolism</subject><subject>Fatigue - physiopathology</subject><subject>Female</subject><subject>gait</subject><subject>Humans</subject><subject>Magnetic resonance spectroscopy</subject><subject>Male</subject><subject>Middle Aged</subject><subject>mitochondria</subject><subject>Mobility</subject><subject>Muscle contraction</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Older people</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Respiration</subject><subject>Skeletal muscle</subject><subject>Special Section “Aging Cohorts: Resources for Translational Research”</subject><subject>Spectrum analysis</subject><subject>Variance analysis</subject><subject>Wrist</subject><issn>1474-9718</issn><issn>1474-9726</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kbuO1DAUQCMEYpeFhg9AlmgQYhY_EjuhQaPR8pBmRcH21o1zE7wk9mAnrNLR0fKNfAmeyTICCtxcS_fo3FeWPWb0nKX3Egz25yynrLiTnbJc5atKcXn3-GflSfYgxmtKmaqouJ-dCFXmolTVafZ9HaM3FkbrXSQ1jjeIjsTP2OMIPRmmaHok6DB0OFoTCbiGgEkVMfgBxzD__PajhogN2WFofRjAGSRtEnZQ296O8yvycZyamfiWXB50L8ilX1IH27qzrnuY3Wuhj_joNp5lV28urjbvVtsPb99v1tuVyfOqWJUMDW3TWKZsa15yuZ9E1lxiAS1UtYGGKt4UXAEC54JCAlkh2yZvStGIs-z1ot1N9YCNQTcG6PUu2AHCrD1Y_XfG2U-681912rOUQqpkeHZrCP7LhHHUg41pHT049FPUvFQlZZJykdCn_6DXfgoujacFlTKvOBUyUc8XygQfY8D22A2j-7JM7--rD_dN8JM_-z-ivw-aALYAN7bH-T8qvd5cbBfpL2TxtJ4</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Qiao, Yujia (Susanna)</creator><creator>Santanasto, Adam J.</creator><creator>Coen, Paul M.</creator><creator>Cawthon, Peggy M.</creator><creator>Cummings, Steven R.</creator><creator>Forman, Daniel E.</creator><creator>Goodpaster, Bret H.</creator><creator>Harezlak, Jaroslaw</creator><creator>Hawkins, Marquis</creator><creator>Kritchevsky, Stephen B.</creator><creator>Nicklas, Barbara J.</creator><creator>Toledo, Frederico G. S.</creator><creator>Toto, Pamela E.</creator><creator>Newman, Anne B.</creator><creator>Glynn, Nancy W.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7356-3320</orcidid><orcidid>https://orcid.org/0000-0002-6912-2909</orcidid><orcidid>https://orcid.org/0000-0003-2265-0162</orcidid><orcidid>https://orcid.org/0000-0002-2805-2115</orcidid></search><sort><creationdate>202406</creationdate><title>Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging</title><author>Qiao, Yujia (Susanna) ; Santanasto, Adam J. ; Coen, Paul M. ; Cawthon, Peggy M. ; Cummings, Steven R. ; Forman, Daniel E. ; Goodpaster, Bret H. ; Harezlak, Jaroslaw ; Hawkins, Marquis ; Kritchevsky, Stephen B. ; Nicklas, Barbara J. ; Toledo, Frederico G. S. ; Toto, Pamela E. ; Newman, Anne B. ; Glynn, Nancy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4495-81ec0f474c8fb282637846b26e5afa9bcad072d527aea2230ac8f156fd4d83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Accelerometry</topic><topic>Adenosine triphosphate</topic><topic>Aged</topic><topic>Aging</topic><topic>Aging - metabolism</topic><topic>Aging - physiology</topic><topic>Biopsy</topic><topic>Body mass index</topic><topic>Cytochrome</topic><topic>Electron transfer</topic><topic>Energy Metabolism - physiology</topic><topic>fatigability</topic><topic>fatigue</topic><topic>Fatigue - metabolism</topic><topic>Fatigue - physiopathology</topic><topic>Female</topic><topic>gait</topic><topic>Humans</topic><topic>Magnetic resonance spectroscopy</topic><topic>Male</topic><topic>Middle Aged</topic><topic>mitochondria</topic><topic>Mobility</topic><topic>Muscle contraction</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Older people</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Respiration</topic><topic>Skeletal muscle</topic><topic>Special Section “Aging Cohorts: Resources for Translational Research”</topic><topic>Spectrum analysis</topic><topic>Variance analysis</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Yujia (Susanna)</creatorcontrib><creatorcontrib>Santanasto, Adam J.</creatorcontrib><creatorcontrib>Coen, Paul M.</creatorcontrib><creatorcontrib>Cawthon, Peggy M.</creatorcontrib><creatorcontrib>Cummings, Steven R.</creatorcontrib><creatorcontrib>Forman, Daniel E.</creatorcontrib><creatorcontrib>Goodpaster, Bret H.</creatorcontrib><creatorcontrib>Harezlak, Jaroslaw</creatorcontrib><creatorcontrib>Hawkins, Marquis</creatorcontrib><creatorcontrib>Kritchevsky, Stephen B.</creatorcontrib><creatorcontrib>Nicklas, Barbara J.</creatorcontrib><creatorcontrib>Toledo, Frederico G. S.</creatorcontrib><creatorcontrib>Toto, Pamela E.</creatorcontrib><creatorcontrib>Newman, Anne B.</creatorcontrib><creatorcontrib>Glynn, Nancy W.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Yujia (Susanna)</au><au>Santanasto, Adam J.</au><au>Coen, Paul M.</au><au>Cawthon, Peggy M.</au><au>Cummings, Steven R.</au><au>Forman, Daniel E.</au><au>Goodpaster, Bret H.</au><au>Harezlak, Jaroslaw</au><au>Hawkins, Marquis</au><au>Kritchevsky, Stephen B.</au><au>Nicklas, Barbara J.</au><au>Toledo, Frederico G. S.</au><au>Toto, Pamela E.</au><au>Newman, Anne B.</au><au>Glynn, Nancy W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2024-06</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>e14015</spage><epage>n/a</epage><pages>e14015-n/a</pages><issn>1474-9718</issn><issn>1474-9726</issn><eissn>1474-9726</eissn><abstract>Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular‐level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual‐paced 400‐m walk wearing a wrist‐worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence‐versus‐time trajectory from their maximal cadence. Complex I&amp;II‐supported maximal oxidative phosphorylation (max OXPHOS) and complex I&amp;II‐supported electron transfer system (max ETS) were quantified ex vivo using high‐resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7‐day free‐living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults. Among 795 older adults from the Study of Muscle, Mobility and Aging, we found that each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37843879</pmid><doi>10.1111/acel.14015</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7356-3320</orcidid><orcidid>https://orcid.org/0000-0002-6912-2909</orcidid><orcidid>https://orcid.org/0000-0003-2265-0162</orcidid><orcidid>https://orcid.org/0000-0002-2805-2115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2024-06, Vol.23 (6), p.e14015-n/a
issn 1474-9718
1474-9726
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166367
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Accelerometers
Accelerometry
Adenosine triphosphate
Aged
Aging
Aging - metabolism
Aging - physiology
Biopsy
Body mass index
Cytochrome
Electron transfer
Energy Metabolism - physiology
fatigability
fatigue
Fatigue - metabolism
Fatigue - physiopathology
Female
gait
Humans
Magnetic resonance spectroscopy
Male
Middle Aged
mitochondria
Mobility
Muscle contraction
Muscle, Skeletal - metabolism
Musculoskeletal system
Older people
Oxidative phosphorylation
Phosphorylation
Respiration
Skeletal muscle
Special Section “Aging Cohorts: Resources for Translational Research”
Spectrum analysis
Variance analysis
Wrist
title Associations between skeletal muscle energetics and accelerometry‐based performance fatigability: Study of Muscle, Mobility and Aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Associations%20between%20skeletal%20muscle%20energetics%20and%20accelerometry%E2%80%90based%20performance%20fatigability:%20Study%20of%20Muscle,%20Mobility%20and%20Aging&rft.jtitle=Aging%20cell&rft.au=Qiao,%20Yujia%20(Susanna)&rft.date=2024-06&rft.volume=23&rft.issue=6&rft.spage=e14015&rft.epage=n/a&rft.pages=e14015-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.14015&rft_dat=%3Cproquest_pubme%3E3066492036%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066492036&rft_id=info:pmid/37843879&rfr_iscdi=true