Formation of Highly Emissive Anthracene Excimers for Aggregation-Induced Emission/Self-Assembly Directed (Bio)imaging
AIEgens have emerged as a promising alternative to molecular rotors in bioimaging applications. However, transferring the concept of aggregation-induced emission (AIE) from solution to living systems remains a challenge. Given the highly heterogeneous nature and the compartmentalization of the cell,...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-09, Vol.15 (38), p.44786-44795 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44795 |
---|---|
container_issue | 38 |
container_start_page | 44786 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Pacheco-Liñán, Pedro J. Alonso-Moreno, Carlos Ocaña, Alberto Ripoll, Consuelo García-Gil, Elena Garzón-Ruíz, Andrés Herrera-Ochoa, Diego Blas-Gómez, Sofía Cohen, Boiko Bravo, Iván |
description | AIEgens have emerged as a promising alternative to molecular rotors in bioimaging applications. However, transferring the concept of aggregation-induced emission (AIE) from solution to living systems remains a challenge. Given the highly heterogeneous nature and the compartmentalization of the cell, different approaches are needed to control the self-assembly within the crowded intricate cellular environment. Herein, we report for the first time the self-assembly mechanism of an anthracene-guanidine derivative (AG) forming the rare and highly emissive T-shaped dimer in breast cancer cell lines as a proof of concept. This process is highly sensitive to the local environment in terms of polarity, viscosity, and/or water quantity that should enable the use of the AG as a fluorescence lifetime imaging biosensor for intracellular imaging of cellular structures and the monitoring of intracellular state parameters. Different populations of the monomer and T-shaped and π–π dimers were observed in the cell membrane, cytoplasm, and nucleoplasm, related to the local viscosity and presence of water. The T-shaped dimer is formed preferentially in the nucleus because of the higher density and viscosity compared to the cytoplasm. The present results should serve as a precursor for the development of new design strategies for molecular systems for a wide range of applications such as cell viscosity, density, or temperature sensing and imaging. |
doi_str_mv | 10.1021/acsami.3c10823 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11165449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864619790</sourcerecordid><originalsourceid>FETCH-LOGICAL-a459t-e91187f03d57f92b3a83d3374c35f12aa27d7fc698bca96fd4bc36ab90f4d453</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMovrcupUsVOubVplnJqOMDBBe6D2madCJtokkr-u-NzjjoQtwkgfudwz05ABwgOEEQo1OpouzthCgEK0zWwDbilOYVLvD66k3pFtiJ8QnCkmBYbIItwkrOC8q2wXjlQy8H613mTXZj23n3ns16G6N91dnUDfMglXY6m70p2-sQM-NDNm3boNsvWX7rmlHpZiny7vRBdyafxqj7Onld2qDVkOZH59Yf21621rV7YMPILur95b0LHq9mjxc3-d399e3F9C6XtOBDrjlCFTOQNAUzHNdEVqQhhFFFCoOwlJg1zKiSV7WSvDQNrRUpZc2hoQ0tyC44W9g-j3Wvm5RjCLITzyGtEd6Fl1b8njg7F61_FQihsqCUJ4ejpUPwL6OOg0gple466bQfoyCQQsIqks7_UFyVtESc8U90skBV8DEGbVYrISg-axWLWsWy1iQ4_BlkhX_3mICTBZCE4smPwaVv_cvtA04Kr0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864619790</pqid></control><display><type>article</type><title>Formation of Highly Emissive Anthracene Excimers for Aggregation-Induced Emission/Self-Assembly Directed (Bio)imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pacheco-Liñán, Pedro J. ; Alonso-Moreno, Carlos ; Ocaña, Alberto ; Ripoll, Consuelo ; García-Gil, Elena ; Garzón-Ruíz, Andrés ; Herrera-Ochoa, Diego ; Blas-Gómez, Sofía ; Cohen, Boiko ; Bravo, Iván</creator><creatorcontrib>Pacheco-Liñán, Pedro J. ; Alonso-Moreno, Carlos ; Ocaña, Alberto ; Ripoll, Consuelo ; García-Gil, Elena ; Garzón-Ruíz, Andrés ; Herrera-Ochoa, Diego ; Blas-Gómez, Sofía ; Cohen, Boiko ; Bravo, Iván</creatorcontrib><description>AIEgens have emerged as a promising alternative to molecular rotors in bioimaging applications. However, transferring the concept of aggregation-induced emission (AIE) from solution to living systems remains a challenge. Given the highly heterogeneous nature and the compartmentalization of the cell, different approaches are needed to control the self-assembly within the crowded intricate cellular environment. Herein, we report for the first time the self-assembly mechanism of an anthracene-guanidine derivative (AG) forming the rare and highly emissive T-shaped dimer in breast cancer cell lines as a proof of concept. This process is highly sensitive to the local environment in terms of polarity, viscosity, and/or water quantity that should enable the use of the AG as a fluorescence lifetime imaging biosensor for intracellular imaging of cellular structures and the monitoring of intracellular state parameters. Different populations of the monomer and T-shaped and π–π dimers were observed in the cell membrane, cytoplasm, and nucleoplasm, related to the local viscosity and presence of water. The T-shaped dimer is formed preferentially in the nucleus because of the higher density and viscosity compared to the cytoplasm. The present results should serve as a precursor for the development of new design strategies for molecular systems for a wide range of applications such as cell viscosity, density, or temperature sensing and imaging.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c10823</identifier><identifier>PMID: 37699547</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anthracenes ; bioimaging ; Biological and Medical Applications of Materials and Interfaces ; biosensors ; breast neoplasms ; Cell Membrane ; cell membranes ; Cytoplasm ; fluorescence ; neoplasm cells ; Optical Imaging ; Polymers ; temperature ; viscosity ; Water ; water quantity</subject><ispartof>ACS applied materials & interfaces, 2023-09, Vol.15 (38), p.44786-44795</ispartof><rights>2023 American Chemical Society</rights><rights>2023 American Chemical Society 2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a459t-e91187f03d57f92b3a83d3374c35f12aa27d7fc698bca96fd4bc36ab90f4d453</citedby><cites>FETCH-LOGICAL-a459t-e91187f03d57f92b3a83d3374c35f12aa27d7fc698bca96fd4bc36ab90f4d453</cites><orcidid>0000-0002-0077-4562 ; 0000-0002-3870-4113 ; 0000-0003-1589-5399 ; 0000-0002-8591-0147 ; 0000-0002-7588-0781 ; 0000-0002-5400-4678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c10823$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c10823$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37699547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pacheco-Liñán, Pedro J.</creatorcontrib><creatorcontrib>Alonso-Moreno, Carlos</creatorcontrib><creatorcontrib>Ocaña, Alberto</creatorcontrib><creatorcontrib>Ripoll, Consuelo</creatorcontrib><creatorcontrib>García-Gil, Elena</creatorcontrib><creatorcontrib>Garzón-Ruíz, Andrés</creatorcontrib><creatorcontrib>Herrera-Ochoa, Diego</creatorcontrib><creatorcontrib>Blas-Gómez, Sofía</creatorcontrib><creatorcontrib>Cohen, Boiko</creatorcontrib><creatorcontrib>Bravo, Iván</creatorcontrib><title>Formation of Highly Emissive Anthracene Excimers for Aggregation-Induced Emission/Self-Assembly Directed (Bio)imaging</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>AIEgens have emerged as a promising alternative to molecular rotors in bioimaging applications. However, transferring the concept of aggregation-induced emission (AIE) from solution to living systems remains a challenge. Given the highly heterogeneous nature and the compartmentalization of the cell, different approaches are needed to control the self-assembly within the crowded intricate cellular environment. Herein, we report for the first time the self-assembly mechanism of an anthracene-guanidine derivative (AG) forming the rare and highly emissive T-shaped dimer in breast cancer cell lines as a proof of concept. This process is highly sensitive to the local environment in terms of polarity, viscosity, and/or water quantity that should enable the use of the AG as a fluorescence lifetime imaging biosensor for intracellular imaging of cellular structures and the monitoring of intracellular state parameters. Different populations of the monomer and T-shaped and π–π dimers were observed in the cell membrane, cytoplasm, and nucleoplasm, related to the local viscosity and presence of water. The T-shaped dimer is formed preferentially in the nucleus because of the higher density and viscosity compared to the cytoplasm. The present results should serve as a precursor for the development of new design strategies for molecular systems for a wide range of applications such as cell viscosity, density, or temperature sensing and imaging.</description><subject>Anthracenes</subject><subject>bioimaging</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>biosensors</subject><subject>breast neoplasms</subject><subject>Cell Membrane</subject><subject>cell membranes</subject><subject>Cytoplasm</subject><subject>fluorescence</subject><subject>neoplasm cells</subject><subject>Optical Imaging</subject><subject>Polymers</subject><subject>temperature</subject><subject>viscosity</subject><subject>Water</subject><subject>water quantity</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMovrcupUsVOubVplnJqOMDBBe6D2madCJtokkr-u-NzjjoQtwkgfudwz05ABwgOEEQo1OpouzthCgEK0zWwDbilOYVLvD66k3pFtiJ8QnCkmBYbIItwkrOC8q2wXjlQy8H613mTXZj23n3ns16G6N91dnUDfMglXY6m70p2-sQM-NDNm3boNsvWX7rmlHpZiny7vRBdyafxqj7Onld2qDVkOZH59Yf21621rV7YMPILur95b0LHq9mjxc3-d399e3F9C6XtOBDrjlCFTOQNAUzHNdEVqQhhFFFCoOwlJg1zKiSV7WSvDQNrRUpZc2hoQ0tyC44W9g-j3Wvm5RjCLITzyGtEd6Fl1b8njg7F61_FQihsqCUJ4ejpUPwL6OOg0gple466bQfoyCQQsIqks7_UFyVtESc8U90skBV8DEGbVYrISg-axWLWsWy1iQ4_BlkhX_3mICTBZCE4smPwaVv_cvtA04Kr0g</recordid><startdate>20230927</startdate><enddate>20230927</enddate><creator>Pacheco-Liñán, Pedro J.</creator><creator>Alonso-Moreno, Carlos</creator><creator>Ocaña, Alberto</creator><creator>Ripoll, Consuelo</creator><creator>García-Gil, Elena</creator><creator>Garzón-Ruíz, Andrés</creator><creator>Herrera-Ochoa, Diego</creator><creator>Blas-Gómez, Sofía</creator><creator>Cohen, Boiko</creator><creator>Bravo, Iván</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0077-4562</orcidid><orcidid>https://orcid.org/0000-0002-3870-4113</orcidid><orcidid>https://orcid.org/0000-0003-1589-5399</orcidid><orcidid>https://orcid.org/0000-0002-8591-0147</orcidid><orcidid>https://orcid.org/0000-0002-7588-0781</orcidid><orcidid>https://orcid.org/0000-0002-5400-4678</orcidid></search><sort><creationdate>20230927</creationdate><title>Formation of Highly Emissive Anthracene Excimers for Aggregation-Induced Emission/Self-Assembly Directed (Bio)imaging</title><author>Pacheco-Liñán, Pedro J. ; Alonso-Moreno, Carlos ; Ocaña, Alberto ; Ripoll, Consuelo ; García-Gil, Elena ; Garzón-Ruíz, Andrés ; Herrera-Ochoa, Diego ; Blas-Gómez, Sofía ; Cohen, Boiko ; Bravo, Iván</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a459t-e91187f03d57f92b3a83d3374c35f12aa27d7fc698bca96fd4bc36ab90f4d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthracenes</topic><topic>bioimaging</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>biosensors</topic><topic>breast neoplasms</topic><topic>Cell Membrane</topic><topic>cell membranes</topic><topic>Cytoplasm</topic><topic>fluorescence</topic><topic>neoplasm cells</topic><topic>Optical Imaging</topic><topic>Polymers</topic><topic>temperature</topic><topic>viscosity</topic><topic>Water</topic><topic>water quantity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacheco-Liñán, Pedro J.</creatorcontrib><creatorcontrib>Alonso-Moreno, Carlos</creatorcontrib><creatorcontrib>Ocaña, Alberto</creatorcontrib><creatorcontrib>Ripoll, Consuelo</creatorcontrib><creatorcontrib>García-Gil, Elena</creatorcontrib><creatorcontrib>Garzón-Ruíz, Andrés</creatorcontrib><creatorcontrib>Herrera-Ochoa, Diego</creatorcontrib><creatorcontrib>Blas-Gómez, Sofía</creatorcontrib><creatorcontrib>Cohen, Boiko</creatorcontrib><creatorcontrib>Bravo, Iván</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pacheco-Liñán, Pedro J.</au><au>Alonso-Moreno, Carlos</au><au>Ocaña, Alberto</au><au>Ripoll, Consuelo</au><au>García-Gil, Elena</au><au>Garzón-Ruíz, Andrés</au><au>Herrera-Ochoa, Diego</au><au>Blas-Gómez, Sofía</au><au>Cohen, Boiko</au><au>Bravo, Iván</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Highly Emissive Anthracene Excimers for Aggregation-Induced Emission/Self-Assembly Directed (Bio)imaging</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-09-27</date><risdate>2023</risdate><volume>15</volume><issue>38</issue><spage>44786</spage><epage>44795</epage><pages>44786-44795</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>AIEgens have emerged as a promising alternative to molecular rotors in bioimaging applications. However, transferring the concept of aggregation-induced emission (AIE) from solution to living systems remains a challenge. Given the highly heterogeneous nature and the compartmentalization of the cell, different approaches are needed to control the self-assembly within the crowded intricate cellular environment. Herein, we report for the first time the self-assembly mechanism of an anthracene-guanidine derivative (AG) forming the rare and highly emissive T-shaped dimer in breast cancer cell lines as a proof of concept. This process is highly sensitive to the local environment in terms of polarity, viscosity, and/or water quantity that should enable the use of the AG as a fluorescence lifetime imaging biosensor for intracellular imaging of cellular structures and the monitoring of intracellular state parameters. Different populations of the monomer and T-shaped and π–π dimers were observed in the cell membrane, cytoplasm, and nucleoplasm, related to the local viscosity and presence of water. The T-shaped dimer is formed preferentially in the nucleus because of the higher density and viscosity compared to the cytoplasm. The present results should serve as a precursor for the development of new design strategies for molecular systems for a wide range of applications such as cell viscosity, density, or temperature sensing and imaging.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37699547</pmid><doi>10.1021/acsami.3c10823</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0077-4562</orcidid><orcidid>https://orcid.org/0000-0002-3870-4113</orcidid><orcidid>https://orcid.org/0000-0003-1589-5399</orcidid><orcidid>https://orcid.org/0000-0002-8591-0147</orcidid><orcidid>https://orcid.org/0000-0002-7588-0781</orcidid><orcidid>https://orcid.org/0000-0002-5400-4678</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-09, Vol.15 (38), p.44786-44795 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11165449 |
source | MEDLINE; American Chemical Society Journals |
subjects | Anthracenes bioimaging Biological and Medical Applications of Materials and Interfaces biosensors breast neoplasms Cell Membrane cell membranes Cytoplasm fluorescence neoplasm cells Optical Imaging Polymers temperature viscosity Water water quantity |
title | Formation of Highly Emissive Anthracene Excimers for Aggregation-Induced Emission/Self-Assembly Directed (Bio)imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Highly%20Emissive%20Anthracene%20Excimers%20for%20Aggregation-Induced%20Emission/Self-Assembly%20Directed%20(Bio)imaging&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Pacheco-Lin%CC%83a%CC%81n,%20Pedro%20J.&rft.date=2023-09-27&rft.volume=15&rft.issue=38&rft.spage=44786&rft.epage=44795&rft.pages=44786-44795&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c10823&rft_dat=%3Cproquest_pubme%3E2864619790%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864619790&rft_id=info:pmid/37699547&rfr_iscdi=true |