RIPK1 protects naive and regulatory T cells from TNFR1-induced apoptosis
The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T c...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2024-06, Vol.31 (6), p.820-832 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 832 |
---|---|
container_issue | 6 |
container_start_page | 820 |
container_title | Cell death and differentiation |
container_volume | 31 |
creator | Huysentruyt, Jelle Steels, Wolf Ruiz Perez, Mario Verstraeten, Bruno Vadi, Mike Divert, Tatyana Flies, Kayleigh Takahashi, Nozomi Lambrecht, Bart N. Declercq, Wim Vanden Berghe, Tom Maelfait, Jonathan Vandenabeele, Peter Tougaard, Peter |
description | The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T cell subsets show a differential requirement for RIPK1 and which programmed cell death pathway they engage in vivo remains unclear. In this study, we demonstrate that conditional ablation of
Ripk1
in conventional T cells (
Ripk1
ΔCD4
) causes peripheral T cell lymphopenia, as witnessed by a profound loss of naive CD4
+
, naive CD8
+
, and FoxP3
+
regulatory T cells. Interestingly, peripheral naive CD8
+
T cells in
Ripk1
ΔCD4
mice appear to undergo a selective pressure to retain RIPK1 expression following activation. Mixed bone marrow chimeras revealed a competitive survival disadvantage for naive, effector, and memory T cells lacking RIPK1. Additionally, tamoxifen-induced deletion of RIPK1 in CD4-expressing cells in adult life confirmed the importance of RIPK1 in post-thymic survival of CD4
+
T cells.
Ripk1
K45A
mice showed no change in peripheral T cell subsets, demonstrating that the T cell lymphopenia was due to the scaffold function of RIPK1 rather than to its kinase activity. Enhanced numbers of
Ripk1
ΔCD4
naive T cells expressed the proliferation marker Ki-67
+
despite the peripheral lymphopenia and single-cell RNA sequencing revealed T cell-specific transcriptomic alterations that were reverted by additional caspase-8 deficiency. Furthermore,
Ripk1
ΔCD4
Casp8
ΔCD4
and
Ripk1
ΔCD4
Tnfr1
−/−
double-knockout mice rescued the peripheral T cell lymphopenia, revealing that RIPK1-deficient naive CD4
+
and CD8
+
cells and FoxP3
+
regulatory T cells specifically die from TNF- and caspase-8-mediated apoptosis in vivo. Altogether, our findings emphasize the essential role of RIPK1 as a scaffold in maintaining the peripheral T cell compartment and preventing TNFR1-induced apoptosis. |
doi_str_mv | 10.1038/s41418-024-01301-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11164875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053969629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d65f36859289ffa6be681324a6494b2dc91642b4bcb02309ee9ed45e9da1d3043</originalsourceid><addsrcrecordid>eNp9kU1PFTEUhhuiAUT_AAvSxA2bak_b6bQrYggIkagh13XTmZ65DJk7HdsZCP_e4kX8WLhqk_Oct33zEHII_B1wad5nBQoM40IxDpIDu98h-6BqzSrF5YtylxVnlqt6j7zK-ZZzrmurd8meNLVUpoJ9cnF9-fUT0CnFGds509H3d0j9GGjC9TL4OaYHuqItDkOmXYobuvp8fg2sH8PSYqB-itMcc59fk5edHzK-eToPyLfzs9XpBbv68vHy9MMVa5XQMwu66qQ2lRXGdp3XDWoDUiivlVWNCK0FrUSjmrbhQnKLaDGoCm3wECRX8oCcbHOnpdlgaHGckx_clPqNTw8u-t79PRn7G7eOdw6gJJu6KgnHTwkpfl8wz27T58eCfsS4ZCd5Ja22WtiCvv0HvY1LGku_QmkNWgI3hRJbqk0x54Td82-Au0dTbmvKFVPupyl3X5aO_uzxvPJLTQHkFshlNK4x_X77P7E_AJpcnkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066163108</pqid></control><display><type>article</type><title>RIPK1 protects naive and regulatory T cells from TNFR1-induced apoptosis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Huysentruyt, Jelle ; Steels, Wolf ; Ruiz Perez, Mario ; Verstraeten, Bruno ; Vadi, Mike ; Divert, Tatyana ; Flies, Kayleigh ; Takahashi, Nozomi ; Lambrecht, Bart N. ; Declercq, Wim ; Vanden Berghe, Tom ; Maelfait, Jonathan ; Vandenabeele, Peter ; Tougaard, Peter</creator><creatorcontrib>Huysentruyt, Jelle ; Steels, Wolf ; Ruiz Perez, Mario ; Verstraeten, Bruno ; Vadi, Mike ; Divert, Tatyana ; Flies, Kayleigh ; Takahashi, Nozomi ; Lambrecht, Bart N. ; Declercq, Wim ; Vanden Berghe, Tom ; Maelfait, Jonathan ; Vandenabeele, Peter ; Tougaard, Peter</creatorcontrib><description>The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T cell subsets show a differential requirement for RIPK1 and which programmed cell death pathway they engage in vivo remains unclear. In this study, we demonstrate that conditional ablation of
Ripk1
in conventional T cells (
Ripk1
ΔCD4
) causes peripheral T cell lymphopenia, as witnessed by a profound loss of naive CD4
+
, naive CD8
+
, and FoxP3
+
regulatory T cells. Interestingly, peripheral naive CD8
+
T cells in
Ripk1
ΔCD4
mice appear to undergo a selective pressure to retain RIPK1 expression following activation. Mixed bone marrow chimeras revealed a competitive survival disadvantage for naive, effector, and memory T cells lacking RIPK1. Additionally, tamoxifen-induced deletion of RIPK1 in CD4-expressing cells in adult life confirmed the importance of RIPK1 in post-thymic survival of CD4
+
T cells.
Ripk1
K45A
mice showed no change in peripheral T cell subsets, demonstrating that the T cell lymphopenia was due to the scaffold function of RIPK1 rather than to its kinase activity. Enhanced numbers of
Ripk1
ΔCD4
naive T cells expressed the proliferation marker Ki-67
+
despite the peripheral lymphopenia and single-cell RNA sequencing revealed T cell-specific transcriptomic alterations that were reverted by additional caspase-8 deficiency. Furthermore,
Ripk1
ΔCD4
Casp8
ΔCD4
and
Ripk1
ΔCD4
Tnfr1
−/−
double-knockout mice rescued the peripheral T cell lymphopenia, revealing that RIPK1-deficient naive CD4
+
and CD8
+
cells and FoxP3
+
regulatory T cells specifically die from TNF- and caspase-8-mediated apoptosis in vivo. Altogether, our findings emphasize the essential role of RIPK1 as a scaffold in maintaining the peripheral T cell compartment and preventing TNFR1-induced apoptosis.</description><identifier>ISSN: 1350-9047</identifier><identifier>ISSN: 1476-5403</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-024-01301-w</identifier><identifier>PMID: 38734851</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 631/250 ; 631/80 ; 64 ; 64/110 ; 64/60 ; Animals ; Apoptosis ; Autoimmunity ; Biochemistry ; Biomedical and Life Sciences ; Caspase 8 - metabolism ; Caspase-8 ; CD4 antigen ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell proliferation ; Cell size ; Cell survival ; Chimeras ; Effector cells ; Foxp3 protein ; Homeostasis ; Immunodeficiency ; Immunological memory ; Immunoregulation ; Life Sciences ; Lymphocytes ; Lymphocytes T ; Lymphopenia ; Lymphopenia - immunology ; Lymphopenia - pathology ; Memory cells ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Receptor-Interacting Protein Serine-Threonine Kinases - genetics ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Receptors, Tumor Necrosis Factor, Type I - metabolism ; Stem Cells ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - metabolism ; Thymus ; Transcriptomics ; Tumor necrosis factor receptors</subject><ispartof>Cell death and differentiation, 2024-06, Vol.31 (6), p.820-832</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-d65f36859289ffa6be681324a6494b2dc91642b4bcb02309ee9ed45e9da1d3043</cites><orcidid>0000-0002-6669-8822 ; 0000-0003-1304-4152 ; 0000-0002-1476-0583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41418-024-01301-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41418-024-01301-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38734851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huysentruyt, Jelle</creatorcontrib><creatorcontrib>Steels, Wolf</creatorcontrib><creatorcontrib>Ruiz Perez, Mario</creatorcontrib><creatorcontrib>Verstraeten, Bruno</creatorcontrib><creatorcontrib>Vadi, Mike</creatorcontrib><creatorcontrib>Divert, Tatyana</creatorcontrib><creatorcontrib>Flies, Kayleigh</creatorcontrib><creatorcontrib>Takahashi, Nozomi</creatorcontrib><creatorcontrib>Lambrecht, Bart N.</creatorcontrib><creatorcontrib>Declercq, Wim</creatorcontrib><creatorcontrib>Vanden Berghe, Tom</creatorcontrib><creatorcontrib>Maelfait, Jonathan</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><creatorcontrib>Tougaard, Peter</creatorcontrib><title>RIPK1 protects naive and regulatory T cells from TNFR1-induced apoptosis</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T cell subsets show a differential requirement for RIPK1 and which programmed cell death pathway they engage in vivo remains unclear. In this study, we demonstrate that conditional ablation of
Ripk1
in conventional T cells (
Ripk1
ΔCD4
) causes peripheral T cell lymphopenia, as witnessed by a profound loss of naive CD4
+
, naive CD8
+
, and FoxP3
+
regulatory T cells. Interestingly, peripheral naive CD8
+
T cells in
Ripk1
ΔCD4
mice appear to undergo a selective pressure to retain RIPK1 expression following activation. Mixed bone marrow chimeras revealed a competitive survival disadvantage for naive, effector, and memory T cells lacking RIPK1. Additionally, tamoxifen-induced deletion of RIPK1 in CD4-expressing cells in adult life confirmed the importance of RIPK1 in post-thymic survival of CD4
+
T cells.
Ripk1
K45A
mice showed no change in peripheral T cell subsets, demonstrating that the T cell lymphopenia was due to the scaffold function of RIPK1 rather than to its kinase activity. Enhanced numbers of
Ripk1
ΔCD4
naive T cells expressed the proliferation marker Ki-67
+
despite the peripheral lymphopenia and single-cell RNA sequencing revealed T cell-specific transcriptomic alterations that were reverted by additional caspase-8 deficiency. Furthermore,
Ripk1
ΔCD4
Casp8
ΔCD4
and
Ripk1
ΔCD4
Tnfr1
−/−
double-knockout mice rescued the peripheral T cell lymphopenia, revealing that RIPK1-deficient naive CD4
+
and CD8
+
cells and FoxP3
+
regulatory T cells specifically die from TNF- and caspase-8-mediated apoptosis in vivo. Altogether, our findings emphasize the essential role of RIPK1 as a scaffold in maintaining the peripheral T cell compartment and preventing TNFR1-induced apoptosis.</description><subject>45</subject><subject>631/250</subject><subject>631/80</subject><subject>64</subject><subject>64/110</subject><subject>64/60</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autoimmunity</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Caspase 8 - metabolism</subject><subject>Caspase-8</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell proliferation</subject><subject>Cell size</subject><subject>Cell survival</subject><subject>Chimeras</subject><subject>Effector cells</subject><subject>Foxp3 protein</subject><subject>Homeostasis</subject><subject>Immunodeficiency</subject><subject>Immunological memory</subject><subject>Immunoregulation</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphopenia</subject><subject>Lymphopenia - immunology</subject><subject>Lymphopenia - pathology</subject><subject>Memory cells</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Receptors, Tumor Necrosis Factor, Type I - metabolism</subject><subject>Stem Cells</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Thymus</subject><subject>Transcriptomics</subject><subject>Tumor necrosis factor receptors</subject><issn>1350-9047</issn><issn>1476-5403</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1PFTEUhhuiAUT_AAvSxA2bak_b6bQrYggIkagh13XTmZ65DJk7HdsZCP_e4kX8WLhqk_Oct33zEHII_B1wad5nBQoM40IxDpIDu98h-6BqzSrF5YtylxVnlqt6j7zK-ZZzrmurd8meNLVUpoJ9cnF9-fUT0CnFGds509H3d0j9GGjC9TL4OaYHuqItDkOmXYobuvp8fg2sH8PSYqB-itMcc59fk5edHzK-eToPyLfzs9XpBbv68vHy9MMVa5XQMwu66qQ2lRXGdp3XDWoDUiivlVWNCK0FrUSjmrbhQnKLaDGoCm3wECRX8oCcbHOnpdlgaHGckx_clPqNTw8u-t79PRn7G7eOdw6gJJu6KgnHTwkpfl8wz27T58eCfsS4ZCd5Ja22WtiCvv0HvY1LGku_QmkNWgI3hRJbqk0x54Td82-Au0dTbmvKFVPupyl3X5aO_uzxvPJLTQHkFshlNK4x_X77P7E_AJpcnkg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Huysentruyt, Jelle</creator><creator>Steels, Wolf</creator><creator>Ruiz Perez, Mario</creator><creator>Verstraeten, Bruno</creator><creator>Vadi, Mike</creator><creator>Divert, Tatyana</creator><creator>Flies, Kayleigh</creator><creator>Takahashi, Nozomi</creator><creator>Lambrecht, Bart N.</creator><creator>Declercq, Wim</creator><creator>Vanden Berghe, Tom</creator><creator>Maelfait, Jonathan</creator><creator>Vandenabeele, Peter</creator><creator>Tougaard, Peter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6669-8822</orcidid><orcidid>https://orcid.org/0000-0003-1304-4152</orcidid><orcidid>https://orcid.org/0000-0002-1476-0583</orcidid></search><sort><creationdate>20240601</creationdate><title>RIPK1 protects naive and regulatory T cells from TNFR1-induced apoptosis</title><author>Huysentruyt, Jelle ; Steels, Wolf ; Ruiz Perez, Mario ; Verstraeten, Bruno ; Vadi, Mike ; Divert, Tatyana ; Flies, Kayleigh ; Takahashi, Nozomi ; Lambrecht, Bart N. ; Declercq, Wim ; Vanden Berghe, Tom ; Maelfait, Jonathan ; Vandenabeele, Peter ; Tougaard, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d65f36859289ffa6be681324a6494b2dc91642b4bcb02309ee9ed45e9da1d3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>45</topic><topic>631/250</topic><topic>631/80</topic><topic>64</topic><topic>64/110</topic><topic>64/60</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autoimmunity</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Caspase 8 - metabolism</topic><topic>Caspase-8</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell proliferation</topic><topic>Cell size</topic><topic>Cell survival</topic><topic>Chimeras</topic><topic>Effector cells</topic><topic>Foxp3 protein</topic><topic>Homeostasis</topic><topic>Immunodeficiency</topic><topic>Immunological memory</topic><topic>Immunoregulation</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphopenia</topic><topic>Lymphopenia - immunology</topic><topic>Lymphopenia - pathology</topic><topic>Memory cells</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - genetics</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Receptors, Tumor Necrosis Factor, Type I - metabolism</topic><topic>Stem Cells</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Thymus</topic><topic>Transcriptomics</topic><topic>Tumor necrosis factor receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huysentruyt, Jelle</creatorcontrib><creatorcontrib>Steels, Wolf</creatorcontrib><creatorcontrib>Ruiz Perez, Mario</creatorcontrib><creatorcontrib>Verstraeten, Bruno</creatorcontrib><creatorcontrib>Vadi, Mike</creatorcontrib><creatorcontrib>Divert, Tatyana</creatorcontrib><creatorcontrib>Flies, Kayleigh</creatorcontrib><creatorcontrib>Takahashi, Nozomi</creatorcontrib><creatorcontrib>Lambrecht, Bart N.</creatorcontrib><creatorcontrib>Declercq, Wim</creatorcontrib><creatorcontrib>Vanden Berghe, Tom</creatorcontrib><creatorcontrib>Maelfait, Jonathan</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><creatorcontrib>Tougaard, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huysentruyt, Jelle</au><au>Steels, Wolf</au><au>Ruiz Perez, Mario</au><au>Verstraeten, Bruno</au><au>Vadi, Mike</au><au>Divert, Tatyana</au><au>Flies, Kayleigh</au><au>Takahashi, Nozomi</au><au>Lambrecht, Bart N.</au><au>Declercq, Wim</au><au>Vanden Berghe, Tom</au><au>Maelfait, Jonathan</au><au>Vandenabeele, Peter</au><au>Tougaard, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RIPK1 protects naive and regulatory T cells from TNFR1-induced apoptosis</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>31</volume><issue>6</issue><spage>820</spage><epage>832</epage><pages>820-832</pages><issn>1350-9047</issn><issn>1476-5403</issn><eissn>1476-5403</eissn><abstract>The T cell population size is stringently controlled before, during, and after immune responses, as improper cell death regulation can result in autoimmunity and immunodeficiency. RIPK1 is an important regulator of peripheral T cell survival and homeostasis. However, whether different peripheral T cell subsets show a differential requirement for RIPK1 and which programmed cell death pathway they engage in vivo remains unclear. In this study, we demonstrate that conditional ablation of
Ripk1
in conventional T cells (
Ripk1
ΔCD4
) causes peripheral T cell lymphopenia, as witnessed by a profound loss of naive CD4
+
, naive CD8
+
, and FoxP3
+
regulatory T cells. Interestingly, peripheral naive CD8
+
T cells in
Ripk1
ΔCD4
mice appear to undergo a selective pressure to retain RIPK1 expression following activation. Mixed bone marrow chimeras revealed a competitive survival disadvantage for naive, effector, and memory T cells lacking RIPK1. Additionally, tamoxifen-induced deletion of RIPK1 in CD4-expressing cells in adult life confirmed the importance of RIPK1 in post-thymic survival of CD4
+
T cells.
Ripk1
K45A
mice showed no change in peripheral T cell subsets, demonstrating that the T cell lymphopenia was due to the scaffold function of RIPK1 rather than to its kinase activity. Enhanced numbers of
Ripk1
ΔCD4
naive T cells expressed the proliferation marker Ki-67
+
despite the peripheral lymphopenia and single-cell RNA sequencing revealed T cell-specific transcriptomic alterations that were reverted by additional caspase-8 deficiency. Furthermore,
Ripk1
ΔCD4
Casp8
ΔCD4
and
Ripk1
ΔCD4
Tnfr1
−/−
double-knockout mice rescued the peripheral T cell lymphopenia, revealing that RIPK1-deficient naive CD4
+
and CD8
+
cells and FoxP3
+
regulatory T cells specifically die from TNF- and caspase-8-mediated apoptosis in vivo. Altogether, our findings emphasize the essential role of RIPK1 as a scaffold in maintaining the peripheral T cell compartment and preventing TNFR1-induced apoptosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38734851</pmid><doi>10.1038/s41418-024-01301-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6669-8822</orcidid><orcidid>https://orcid.org/0000-0003-1304-4152</orcidid><orcidid>https://orcid.org/0000-0002-1476-0583</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2024-06, Vol.31 (6), p.820-832 |
issn | 1350-9047 1476-5403 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11164875 |
source | MEDLINE; SpringerLink Journals |
subjects | 45 631/250 631/80 64 64/110 64/60 Animals Apoptosis Autoimmunity Biochemistry Biomedical and Life Sciences Caspase 8 - metabolism Caspase-8 CD4 antigen CD8 antigen CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell Biology Cell Cycle Analysis Cell death Cell proliferation Cell size Cell survival Chimeras Effector cells Foxp3 protein Homeostasis Immunodeficiency Immunological memory Immunoregulation Life Sciences Lymphocytes Lymphocytes T Lymphopenia Lymphopenia - immunology Lymphopenia - pathology Memory cells Mice Mice, Inbred C57BL Mice, Knockout Receptor-Interacting Protein Serine-Threonine Kinases - genetics Receptor-Interacting Protein Serine-Threonine Kinases - metabolism Receptors, Tumor Necrosis Factor, Type I - metabolism Stem Cells T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - metabolism Thymus Transcriptomics Tumor necrosis factor receptors |
title | RIPK1 protects naive and regulatory T cells from TNFR1-induced apoptosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RIPK1%20protects%20naive%20and%20regulatory%20T%20cells%20from%20TNFR1-induced%20apoptosis&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Huysentruyt,%20Jelle&rft.date=2024-06-01&rft.volume=31&rft.issue=6&rft.spage=820&rft.epage=832&rft.pages=820-832&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-024-01301-w&rft_dat=%3Cproquest_pubme%3E3053969629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066163108&rft_id=info:pmid/38734851&rfr_iscdi=true |