Feasibility of determining external beam radiotherapy dose using LuSy dosimeter
Introduction Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy a...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Clinical Medical Physics 2024-06, Vol.25 (6), p.e14387-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e14387 |
container_title | Journal of Applied Clinical Medical Physics |
container_volume | 25 |
creator | Wahabi, Janatul Madinah Wong, Jeannie Hsiu Ding Mahdiraji, Ghafour A. Ung, Ngie Min |
description | Introduction
Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS).
Materials and methods
A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS).
Results
For CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively.
Conclusion
The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients. |
doi_str_mv | 10.1002/acm2.14387 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11163501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807000075</galeid><sourcerecordid>A807000075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4757-95a54b8dd9f9a85dc6d783b239f5158e55d1df5e52eab42ba656d8c0a5c3af883</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EoqVw4QFQJC6o0i52kknsE1qtKCAt6gE4WxN7snWVxIudFPbt6zSlKhywDx7b3_wz9s_Ya8HXgvP8PZo-X4uykPUTdiogr1ZKifLpo_iEvYjxmnMhZCGfs5OE1hKq-pRdXhBG17jOjcfMt5mlkULvBjfsM_qd4gG7rCHss4DW-fGKAh6OmfWRsinO1G76drd3_Zz6kj1rsYv06n49Yz8uPn7ffl7tLj992W52K1PWUK8UIJSNtFa1CiVYU9laFk1eqBYESAKwwrZAkBM2Zd5gBZWVhiOYAlspizP2YdE9TE1P1tAwBuz0Ibgew1F7dPrvm8Fd6b2_0UKIqgAuksK7e4Xgf04UR927aKjrcCA_RV1wUDlUXPCEvv0HvfbT_DMzVYFSpYS5pfVC7bEj7YbWp8ImTUu9M36g1qXzjeQ1T6OGlHC-JJjgYwzUPrQvuJ6d1bOz-s7ZBL95_OAH9I-VCRAL8CuVOf5HSm-2X_NF9BaZ7a6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065994858</pqid></control><display><type>article</type><title>Feasibility of determining external beam radiotherapy dose using LuSy dosimeter</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Wahabi, Janatul Madinah ; Wong, Jeannie Hsiu Ding ; Mahdiraji, Ghafour A. ; Ung, Ngie Min</creator><creatorcontrib>Wahabi, Janatul Madinah ; Wong, Jeannie Hsiu Ding ; Mahdiraji, Ghafour A. ; Ung, Ngie Min</creatorcontrib><description>Introduction
Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS).
Materials and methods
A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS).
Results
For CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively.
Conclusion
The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.</description><identifier>ISSN: 1526-9914</identifier><identifier>EISSN: 1526-9914</identifier><identifier>DOI: 10.1002/acm2.14387</identifier><identifier>PMID: 38778567</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Abdomen ; Care and treatment ; conformal radiotherapy ; Dosimetry ; Feasibility Studies ; Humans ; IMRT ; Ionization ; Neoplasms - radiotherapy ; Organs at Risk - radiation effects ; Particle Accelerators - instrumentation ; Patients ; Phantoms, Imaging ; Planning ; plastic scintillator ; Radiation ; Radiation Dosimeters ; Radiation Measurements ; Radiation therapy ; Radiometry - instrumentation ; Radiometry - methods ; Radiosurgery ; Radiosurgery - methods ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Conformal - instrumentation ; Radiotherapy, Conformal - methods ; Radiotherapy, Intensity-Modulated - methods ; Sensors ; SRS ; Transistors ; VMAT ; X-rays</subject><ispartof>Journal of Applied Clinical Medical Physics, 2024-06, Vol.25 (6), p.e14387-n/a</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.</rights><rights>2024 The Author(s). Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.</rights><rights>COPYRIGHT 2024 John Wiley & Sons, Inc.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4757-95a54b8dd9f9a85dc6d783b239f5158e55d1df5e52eab42ba656d8c0a5c3af883</cites><orcidid>0000-0002-4654-333X ; 0000-0001-8080-1294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163501/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163501/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38778567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wahabi, Janatul Madinah</creatorcontrib><creatorcontrib>Wong, Jeannie Hsiu Ding</creatorcontrib><creatorcontrib>Mahdiraji, Ghafour A.</creatorcontrib><creatorcontrib>Ung, Ngie Min</creatorcontrib><title>Feasibility of determining external beam radiotherapy dose using LuSy dosimeter</title><title>Journal of Applied Clinical Medical Physics</title><addtitle>J Appl Clin Med Phys</addtitle><description>Introduction
Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS).
Materials and methods
A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS).
Results
For CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively.
Conclusion
The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.</description><subject>Abdomen</subject><subject>Care and treatment</subject><subject>conformal radiotherapy</subject><subject>Dosimetry</subject><subject>Feasibility Studies</subject><subject>Humans</subject><subject>IMRT</subject><subject>Ionization</subject><subject>Neoplasms - radiotherapy</subject><subject>Organs at Risk - radiation effects</subject><subject>Particle Accelerators - instrumentation</subject><subject>Patients</subject><subject>Phantoms, Imaging</subject><subject>Planning</subject><subject>plastic scintillator</subject><subject>Radiation</subject><subject>Radiation Dosimeters</subject><subject>Radiation Measurements</subject><subject>Radiation therapy</subject><subject>Radiometry - instrumentation</subject><subject>Radiometry - methods</subject><subject>Radiosurgery</subject><subject>Radiosurgery - methods</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Conformal - instrumentation</subject><subject>Radiotherapy, Conformal - methods</subject><subject>Radiotherapy, Intensity-Modulated - methods</subject><subject>Sensors</subject><subject>SRS</subject><subject>Transistors</subject><subject>VMAT</subject><subject>X-rays</subject><issn>1526-9914</issn><issn>1526-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhi0EoqVw4QFQJC6o0i52kknsE1qtKCAt6gE4WxN7snWVxIudFPbt6zSlKhywDx7b3_wz9s_Ya8HXgvP8PZo-X4uykPUTdiogr1ZKifLpo_iEvYjxmnMhZCGfs5OE1hKq-pRdXhBG17jOjcfMt5mlkULvBjfsM_qd4gG7rCHss4DW-fGKAh6OmfWRsinO1G76drd3_Zz6kj1rsYv06n49Yz8uPn7ffl7tLj992W52K1PWUK8UIJSNtFa1CiVYU9laFk1eqBYESAKwwrZAkBM2Zd5gBZWVhiOYAlspizP2YdE9TE1P1tAwBuz0Ibgew1F7dPrvm8Fd6b2_0UKIqgAuksK7e4Xgf04UR927aKjrcCA_RV1wUDlUXPCEvv0HvfbT_DMzVYFSpYS5pfVC7bEj7YbWp8ImTUu9M36g1qXzjeQ1T6OGlHC-JJjgYwzUPrQvuJ6d1bOz-s7ZBL95_OAH9I-VCRAL8CuVOf5HSm-2X_NF9BaZ7a6A</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Wahabi, Janatul Madinah</creator><creator>Wong, Jeannie Hsiu Ding</creator><creator>Mahdiraji, Ghafour A.</creator><creator>Ung, Ngie Min</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4654-333X</orcidid><orcidid>https://orcid.org/0000-0001-8080-1294</orcidid></search><sort><creationdate>202406</creationdate><title>Feasibility of determining external beam radiotherapy dose using LuSy dosimeter</title><author>Wahabi, Janatul Madinah ; Wong, Jeannie Hsiu Ding ; Mahdiraji, Ghafour A. ; Ung, Ngie Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4757-95a54b8dd9f9a85dc6d783b239f5158e55d1df5e52eab42ba656d8c0a5c3af883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abdomen</topic><topic>Care and treatment</topic><topic>conformal radiotherapy</topic><topic>Dosimetry</topic><topic>Feasibility Studies</topic><topic>Humans</topic><topic>IMRT</topic><topic>Ionization</topic><topic>Neoplasms - radiotherapy</topic><topic>Organs at Risk - radiation effects</topic><topic>Particle Accelerators - instrumentation</topic><topic>Patients</topic><topic>Phantoms, Imaging</topic><topic>Planning</topic><topic>plastic scintillator</topic><topic>Radiation</topic><topic>Radiation Dosimeters</topic><topic>Radiation Measurements</topic><topic>Radiation therapy</topic><topic>Radiometry - instrumentation</topic><topic>Radiometry - methods</topic><topic>Radiosurgery</topic><topic>Radiosurgery - methods</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Conformal - instrumentation</topic><topic>Radiotherapy, Conformal - methods</topic><topic>Radiotherapy, Intensity-Modulated - methods</topic><topic>Sensors</topic><topic>SRS</topic><topic>Transistors</topic><topic>VMAT</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahabi, Janatul Madinah</creatorcontrib><creatorcontrib>Wong, Jeannie Hsiu Ding</creatorcontrib><creatorcontrib>Mahdiraji, Ghafour A.</creatorcontrib><creatorcontrib>Ung, Ngie Min</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Applied Clinical Medical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahabi, Janatul Madinah</au><au>Wong, Jeannie Hsiu Ding</au><au>Mahdiraji, Ghafour A.</au><au>Ung, Ngie Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of determining external beam radiotherapy dose using LuSy dosimeter</atitle><jtitle>Journal of Applied Clinical Medical Physics</jtitle><addtitle>J Appl Clin Med Phys</addtitle><date>2024-06</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><spage>e14387</spage><epage>n/a</epage><pages>e14387-n/a</pages><issn>1526-9914</issn><eissn>1526-9914</eissn><abstract>Introduction
Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS).
Materials and methods
A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS).
Results
For CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively.
Conclusion
The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>38778567</pmid><doi>10.1002/acm2.14387</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4654-333X</orcidid><orcidid>https://orcid.org/0000-0001-8080-1294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-9914 |
ispartof | Journal of Applied Clinical Medical Physics, 2024-06, Vol.25 (6), p.e14387-n/a |
issn | 1526-9914 1526-9914 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11163501 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Abdomen Care and treatment conformal radiotherapy Dosimetry Feasibility Studies Humans IMRT Ionization Neoplasms - radiotherapy Organs at Risk - radiation effects Particle Accelerators - instrumentation Patients Phantoms, Imaging Planning plastic scintillator Radiation Radiation Dosimeters Radiation Measurements Radiation therapy Radiometry - instrumentation Radiometry - methods Radiosurgery Radiosurgery - methods Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Conformal - instrumentation Radiotherapy, Conformal - methods Radiotherapy, Intensity-Modulated - methods Sensors SRS Transistors VMAT X-rays |
title | Feasibility of determining external beam radiotherapy dose using LuSy dosimeter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20determining%20external%20beam%20radiotherapy%20dose%20using%20LuSy%20dosimeter&rft.jtitle=Journal%20of%20Applied%20Clinical%20Medical%20Physics&rft.au=Wahabi,%20Janatul%20Madinah&rft.date=2024-06&rft.volume=25&rft.issue=6&rft.spage=e14387&rft.epage=n/a&rft.pages=e14387-n/a&rft.issn=1526-9914&rft.eissn=1526-9914&rft_id=info:doi/10.1002/acm2.14387&rft_dat=%3Cgale_pubme%3EA807000075%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065994858&rft_id=info:pmid/38778567&rft_galeid=A807000075&rfr_iscdi=true |