Feasibility of determining external beam radiotherapy dose using LuSy dosimeter

Introduction Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Clinical Medical Physics 2024-06, Vol.25 (6), p.e14387-n/a
Hauptverfasser: Wahabi, Janatul Madinah, Wong, Jeannie Hsiu Ding, Mahdiraji, Ghafour A., Ung, Ngie Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e14387
container_title Journal of Applied Clinical Medical Physics
container_volume 25
creator Wahabi, Janatul Madinah
Wong, Jeannie Hsiu Ding
Mahdiraji, Ghafour A.
Ung, Ngie Min
description Introduction Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Materials and methods A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS). Results For CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively. Conclusion The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.
doi_str_mv 10.1002/acm2.14387
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11163501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A807000075</galeid><sourcerecordid>A807000075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4757-95a54b8dd9f9a85dc6d783b239f5158e55d1df5e52eab42ba656d8c0a5c3af883</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EoqVw4QFQJC6o0i52kknsE1qtKCAt6gE4WxN7snWVxIudFPbt6zSlKhywDx7b3_wz9s_Ya8HXgvP8PZo-X4uykPUTdiogr1ZKifLpo_iEvYjxmnMhZCGfs5OE1hKq-pRdXhBG17jOjcfMt5mlkULvBjfsM_qd4gG7rCHss4DW-fGKAh6OmfWRsinO1G76drd3_Zz6kj1rsYv06n49Yz8uPn7ffl7tLj992W52K1PWUK8UIJSNtFa1CiVYU9laFk1eqBYESAKwwrZAkBM2Zd5gBZWVhiOYAlspizP2YdE9TE1P1tAwBuz0Ibgew1F7dPrvm8Fd6b2_0UKIqgAuksK7e4Xgf04UR927aKjrcCA_RV1wUDlUXPCEvv0HvfbT_DMzVYFSpYS5pfVC7bEj7YbWp8ImTUu9M36g1qXzjeQ1T6OGlHC-JJjgYwzUPrQvuJ6d1bOz-s7ZBL95_OAH9I-VCRAL8CuVOf5HSm-2X_NF9BaZ7a6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065994858</pqid></control><display><type>article</type><title>Feasibility of determining external beam radiotherapy dose using LuSy dosimeter</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Wahabi, Janatul Madinah ; Wong, Jeannie Hsiu Ding ; Mahdiraji, Ghafour A. ; Ung, Ngie Min</creator><creatorcontrib>Wahabi, Janatul Madinah ; Wong, Jeannie Hsiu Ding ; Mahdiraji, Ghafour A. ; Ung, Ngie Min</creatorcontrib><description>Introduction Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Materials and methods A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS). Results For CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively. Conclusion The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.</description><identifier>ISSN: 1526-9914</identifier><identifier>EISSN: 1526-9914</identifier><identifier>DOI: 10.1002/acm2.14387</identifier><identifier>PMID: 38778567</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Abdomen ; Care and treatment ; conformal radiotherapy ; Dosimetry ; Feasibility Studies ; Humans ; IMRT ; Ionization ; Neoplasms - radiotherapy ; Organs at Risk - radiation effects ; Particle Accelerators - instrumentation ; Patients ; Phantoms, Imaging ; Planning ; plastic scintillator ; Radiation ; Radiation Dosimeters ; Radiation Measurements ; Radiation therapy ; Radiometry - instrumentation ; Radiometry - methods ; Radiosurgery ; Radiosurgery - methods ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Conformal - instrumentation ; Radiotherapy, Conformal - methods ; Radiotherapy, Intensity-Modulated - methods ; Sensors ; SRS ; Transistors ; VMAT ; X-rays</subject><ispartof>Journal of Applied Clinical Medical Physics, 2024-06, Vol.25 (6), p.e14387-n/a</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.</rights><rights>2024 The Author(s). Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.</rights><rights>COPYRIGHT 2024 John Wiley &amp; Sons, Inc.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4757-95a54b8dd9f9a85dc6d783b239f5158e55d1df5e52eab42ba656d8c0a5c3af883</cites><orcidid>0000-0002-4654-333X ; 0000-0001-8080-1294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163501/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163501/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38778567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wahabi, Janatul Madinah</creatorcontrib><creatorcontrib>Wong, Jeannie Hsiu Ding</creatorcontrib><creatorcontrib>Mahdiraji, Ghafour A.</creatorcontrib><creatorcontrib>Ung, Ngie Min</creatorcontrib><title>Feasibility of determining external beam radiotherapy dose using LuSy dosimeter</title><title>Journal of Applied Clinical Medical Physics</title><addtitle>J Appl Clin Med Phys</addtitle><description>Introduction Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Materials and methods A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS). Results For CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively. Conclusion The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.</description><subject>Abdomen</subject><subject>Care and treatment</subject><subject>conformal radiotherapy</subject><subject>Dosimetry</subject><subject>Feasibility Studies</subject><subject>Humans</subject><subject>IMRT</subject><subject>Ionization</subject><subject>Neoplasms - radiotherapy</subject><subject>Organs at Risk - radiation effects</subject><subject>Particle Accelerators - instrumentation</subject><subject>Patients</subject><subject>Phantoms, Imaging</subject><subject>Planning</subject><subject>plastic scintillator</subject><subject>Radiation</subject><subject>Radiation Dosimeters</subject><subject>Radiation Measurements</subject><subject>Radiation therapy</subject><subject>Radiometry - instrumentation</subject><subject>Radiometry - methods</subject><subject>Radiosurgery</subject><subject>Radiosurgery - methods</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Conformal - instrumentation</subject><subject>Radiotherapy, Conformal - methods</subject><subject>Radiotherapy, Intensity-Modulated - methods</subject><subject>Sensors</subject><subject>SRS</subject><subject>Transistors</subject><subject>VMAT</subject><subject>X-rays</subject><issn>1526-9914</issn><issn>1526-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhi0EoqVw4QFQJC6o0i52kknsE1qtKCAt6gE4WxN7snWVxIudFPbt6zSlKhywDx7b3_wz9s_Ya8HXgvP8PZo-X4uykPUTdiogr1ZKifLpo_iEvYjxmnMhZCGfs5OE1hKq-pRdXhBG17jOjcfMt5mlkULvBjfsM_qd4gG7rCHss4DW-fGKAh6OmfWRsinO1G76drd3_Zz6kj1rsYv06n49Yz8uPn7ffl7tLj992W52K1PWUK8UIJSNtFa1CiVYU9laFk1eqBYESAKwwrZAkBM2Zd5gBZWVhiOYAlspizP2YdE9TE1P1tAwBuz0Ibgew1F7dPrvm8Fd6b2_0UKIqgAuksK7e4Xgf04UR927aKjrcCA_RV1wUDlUXPCEvv0HvfbT_DMzVYFSpYS5pfVC7bEj7YbWp8ImTUu9M36g1qXzjeQ1T6OGlHC-JJjgYwzUPrQvuJ6d1bOz-s7ZBL95_OAH9I-VCRAL8CuVOf5HSm-2X_NF9BaZ7a6A</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Wahabi, Janatul Madinah</creator><creator>Wong, Jeannie Hsiu Ding</creator><creator>Mahdiraji, Ghafour A.</creator><creator>Ung, Ngie Min</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4654-333X</orcidid><orcidid>https://orcid.org/0000-0001-8080-1294</orcidid></search><sort><creationdate>202406</creationdate><title>Feasibility of determining external beam radiotherapy dose using LuSy dosimeter</title><author>Wahabi, Janatul Madinah ; Wong, Jeannie Hsiu Ding ; Mahdiraji, Ghafour A. ; Ung, Ngie Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4757-95a54b8dd9f9a85dc6d783b239f5158e55d1df5e52eab42ba656d8c0a5c3af883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abdomen</topic><topic>Care and treatment</topic><topic>conformal radiotherapy</topic><topic>Dosimetry</topic><topic>Feasibility Studies</topic><topic>Humans</topic><topic>IMRT</topic><topic>Ionization</topic><topic>Neoplasms - radiotherapy</topic><topic>Organs at Risk - radiation effects</topic><topic>Particle Accelerators - instrumentation</topic><topic>Patients</topic><topic>Phantoms, Imaging</topic><topic>Planning</topic><topic>plastic scintillator</topic><topic>Radiation</topic><topic>Radiation Dosimeters</topic><topic>Radiation Measurements</topic><topic>Radiation therapy</topic><topic>Radiometry - instrumentation</topic><topic>Radiometry - methods</topic><topic>Radiosurgery</topic><topic>Radiosurgery - methods</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Conformal - instrumentation</topic><topic>Radiotherapy, Conformal - methods</topic><topic>Radiotherapy, Intensity-Modulated - methods</topic><topic>Sensors</topic><topic>SRS</topic><topic>Transistors</topic><topic>VMAT</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahabi, Janatul Madinah</creatorcontrib><creatorcontrib>Wong, Jeannie Hsiu Ding</creatorcontrib><creatorcontrib>Mahdiraji, Ghafour A.</creatorcontrib><creatorcontrib>Ung, Ngie Min</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Applied Clinical Medical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahabi, Janatul Madinah</au><au>Wong, Jeannie Hsiu Ding</au><au>Mahdiraji, Ghafour A.</au><au>Ung, Ngie Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of determining external beam radiotherapy dose using LuSy dosimeter</atitle><jtitle>Journal of Applied Clinical Medical Physics</jtitle><addtitle>J Appl Clin Med Phys</addtitle><date>2024-06</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><spage>e14387</spage><epage>n/a</epage><pages>e14387-n/a</pages><issn>1526-9914</issn><eissn>1526-9914</eissn><abstract>Introduction Radiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic‐resonance linear accelerators (MR‐LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator‐based dosimeter with high spatial resolution and real‐time dose output. This study explores the feasibility of using the LuSy dosimeter, an in‐house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity‐modulated radiation therapy (IMRT), volumetric‐modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Materials and methods A new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS). Results For CRT, surface dose measurement by LuSy dosimeter showed a deviation of ‐5.5% and ‐5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of ‐3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were ‐2.0%, ‐19.5%, and 16.1%, respectively. Conclusion The LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38778567</pmid><doi>10.1002/acm2.14387</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4654-333X</orcidid><orcidid>https://orcid.org/0000-0001-8080-1294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-9914
ispartof Journal of Applied Clinical Medical Physics, 2024-06, Vol.25 (6), p.e14387-n/a
issn 1526-9914
1526-9914
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11163501
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); PubMed Central
subjects Abdomen
Care and treatment
conformal radiotherapy
Dosimetry
Feasibility Studies
Humans
IMRT
Ionization
Neoplasms - radiotherapy
Organs at Risk - radiation effects
Particle Accelerators - instrumentation
Patients
Phantoms, Imaging
Planning
plastic scintillator
Radiation
Radiation Dosimeters
Radiation Measurements
Radiation therapy
Radiometry - instrumentation
Radiometry - methods
Radiosurgery
Radiosurgery - methods
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Conformal - instrumentation
Radiotherapy, Conformal - methods
Radiotherapy, Intensity-Modulated - methods
Sensors
SRS
Transistors
VMAT
X-rays
title Feasibility of determining external beam radiotherapy dose using LuSy dosimeter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20determining%20external%20beam%20radiotherapy%20dose%20using%20LuSy%20dosimeter&rft.jtitle=Journal%20of%20Applied%20Clinical%20Medical%20Physics&rft.au=Wahabi,%20Janatul%20Madinah&rft.date=2024-06&rft.volume=25&rft.issue=6&rft.spage=e14387&rft.epage=n/a&rft.pages=e14387-n/a&rft.issn=1526-9914&rft.eissn=1526-9914&rft_id=info:doi/10.1002/acm2.14387&rft_dat=%3Cgale_pubme%3EA807000075%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065994858&rft_id=info:pmid/38778567&rft_galeid=A807000075&rfr_iscdi=true