Spatiotemporal constrained RNA–protein heterogeneous network for protein complex identification
Abstract The identification of protein complexes from protein interaction networks is crucial in the understanding of protein function, cellular processes and disease mechanisms. Existing methods commonly rely on the assumption that protein interaction networks are highly reliable, yet in reality, t...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2024-06, Vol.25 (4) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 25 |
creator | Li, Zeqian Wang, Shilong Cui, Hai Liu, Xiaoxia Zhang, Yijia |
description | Abstract
The identification of protein complexes from protein interaction networks is crucial in the understanding of protein function, cellular processes and disease mechanisms. Existing methods commonly rely on the assumption that protein interaction networks are highly reliable, yet in reality, there is considerable noise in the data. In addition, these methods fail to account for the regulatory roles of biomolecules during the formation of protein complexes, which is crucial for understanding the generation of protein interactions. To this end, we propose a SpatioTemporal constrained RNA–protein heterogeneous network for Protein Complex Identification (STRPCI). STRPCI first constructs a multiplex heterogeneous protein information network to capture deep semantic information by extracting spatiotemporal interaction patterns. Then, it utilizes a dual-view aggregator to aggregate heterogeneous neighbor information from different layers. Finally, through contrastive learning, STRPCI collaboratively optimizes the protein embedding representations under different spatiotemporal interaction patterns. Based on the protein embedding similarity, STRPCI reweights the protein interaction network and identifies protein complexes with core-attachment strategy. By considering the spatiotemporal constraints and biomolecular regulatory factors of protein interactions, STRPCI measures the tightness of interactions, thus mitigating the impact of noisy data on complex identification. Evaluation results on four real PPI networks demonstrate the effectiveness and strong biological significance of STRPCI. The source code implementation of STRPCI is available from https://github.com/LI-jasm/STRPCI. |
doi_str_mv | 10.1093/bib/bbae280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11163383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbae280</oup_id><sourcerecordid>3103007034</sourcerecordid><originalsourceid>FETCH-LOGICAL-o293t-f148ad14f9a34fb1d99181a82751943b380ef51dae60fb856627518073d684243</originalsourceid><addsrcrecordid>eNpdkctKxjAUhIMo3lfupSCIm2pOT9qmKxHxBqLgZR3SNtVom9S09bLzHXxDn8TU__9FXSUwH8PMGUI2gO4CzXAv1_lenksVcTpHloGlachozObHf5KGMUtwiax03QOlEU05LJIl5DxOIIVlIq9b2Wvbq6a1TtZBYU3XO6mNKoOri4PP94_WeVWb4F71ytk7ZZQdusCo_sW6x6CyLpgRhW3aWr0GulSm15UuRmezRhYqWXdqffquktvjo5vD0_D88uTs8OA8tFGGfVgB47IEVmUSWZVDmWXAQfIojSFjmCOnqoqhlCqhVe7jJ6PCaYplwlnEcJXsT3zbIW9UWfgMvpBonW6kexNWavFXMfpe3NlnAQAJIkfvsDN1cPZpUF0vGt0Vqq7ld2eBNPFgHMUjuvUPfbCDM76fQKBIaUpxjLT5O9JPltn5PbA9AezQ_qhAxbir8LuK6a74Bf8Xlo0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103007034</pqid></control><display><type>article</type><title>Spatiotemporal constrained RNA–protein heterogeneous network for protein complex identification</title><source>MEDLINE</source><source>PubMed Central (Open Access)</source><source>Oxford Journals Open Access Collection</source><creator>Li, Zeqian ; Wang, Shilong ; Cui, Hai ; Liu, Xiaoxia ; Zhang, Yijia</creator><creatorcontrib>Li, Zeqian ; Wang, Shilong ; Cui, Hai ; Liu, Xiaoxia ; Zhang, Yijia</creatorcontrib><description>Abstract
The identification of protein complexes from protein interaction networks is crucial in the understanding of protein function, cellular processes and disease mechanisms. Existing methods commonly rely on the assumption that protein interaction networks are highly reliable, yet in reality, there is considerable noise in the data. In addition, these methods fail to account for the regulatory roles of biomolecules during the formation of protein complexes, which is crucial for understanding the generation of protein interactions. To this end, we propose a SpatioTemporal constrained RNA–protein heterogeneous network for Protein Complex Identification (STRPCI). STRPCI first constructs a multiplex heterogeneous protein information network to capture deep semantic information by extracting spatiotemporal interaction patterns. Then, it utilizes a dual-view aggregator to aggregate heterogeneous neighbor information from different layers. Finally, through contrastive learning, STRPCI collaboratively optimizes the protein embedding representations under different spatiotemporal interaction patterns. Based on the protein embedding similarity, STRPCI reweights the protein interaction network and identifies protein complexes with core-attachment strategy. By considering the spatiotemporal constraints and biomolecular regulatory factors of protein interactions, STRPCI measures the tightness of interactions, thus mitigating the impact of noisy data on complex identification. Evaluation results on four real PPI networks demonstrate the effectiveness and strong biological significance of STRPCI. The source code implementation of STRPCI is available from https://github.com/LI-jasm/STRPCI.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbae280</identifier><identifier>PMID: 38856171</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Biological effects ; Biomolecules ; Computational Biology - methods ; Constraints ; Embedding ; Humans ; Information processing ; Networks ; Problem Solving Protocol ; Protein interaction ; Protein Interaction Mapping - methods ; Protein Interaction Maps ; Proteins ; Proteins - chemistry ; Proteins - metabolism ; RNA - chemistry ; RNA - metabolism ; Source code ; Spatiotemporal data ; Tightness</subject><ispartof>Briefings in bioinformatics, 2024-06, Vol.25 (4)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163383/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163383/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38856171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zeqian</creatorcontrib><creatorcontrib>Wang, Shilong</creatorcontrib><creatorcontrib>Cui, Hai</creatorcontrib><creatorcontrib>Liu, Xiaoxia</creatorcontrib><creatorcontrib>Zhang, Yijia</creatorcontrib><title>Spatiotemporal constrained RNA–protein heterogeneous network for protein complex identification</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract
The identification of protein complexes from protein interaction networks is crucial in the understanding of protein function, cellular processes and disease mechanisms. Existing methods commonly rely on the assumption that protein interaction networks are highly reliable, yet in reality, there is considerable noise in the data. In addition, these methods fail to account for the regulatory roles of biomolecules during the formation of protein complexes, which is crucial for understanding the generation of protein interactions. To this end, we propose a SpatioTemporal constrained RNA–protein heterogeneous network for Protein Complex Identification (STRPCI). STRPCI first constructs a multiplex heterogeneous protein information network to capture deep semantic information by extracting spatiotemporal interaction patterns. Then, it utilizes a dual-view aggregator to aggregate heterogeneous neighbor information from different layers. Finally, through contrastive learning, STRPCI collaboratively optimizes the protein embedding representations under different spatiotemporal interaction patterns. Based on the protein embedding similarity, STRPCI reweights the protein interaction network and identifies protein complexes with core-attachment strategy. By considering the spatiotemporal constraints and biomolecular regulatory factors of protein interactions, STRPCI measures the tightness of interactions, thus mitigating the impact of noisy data on complex identification. Evaluation results on four real PPI networks demonstrate the effectiveness and strong biological significance of STRPCI. The source code implementation of STRPCI is available from https://github.com/LI-jasm/STRPCI.</description><subject>Algorithms</subject><subject>Biological effects</subject><subject>Biomolecules</subject><subject>Computational Biology - methods</subject><subject>Constraints</subject><subject>Embedding</subject><subject>Humans</subject><subject>Information processing</subject><subject>Networks</subject><subject>Problem Solving Protocol</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Interaction Maps</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><subject>Source code</subject><subject>Spatiotemporal data</subject><subject>Tightness</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNpdkctKxjAUhIMo3lfupSCIm2pOT9qmKxHxBqLgZR3SNtVom9S09bLzHXxDn8TU__9FXSUwH8PMGUI2gO4CzXAv1_lenksVcTpHloGlachozObHf5KGMUtwiax03QOlEU05LJIl5DxOIIVlIq9b2Wvbq6a1TtZBYU3XO6mNKoOri4PP94_WeVWb4F71ytk7ZZQdusCo_sW6x6CyLpgRhW3aWr0GulSm15UuRmezRhYqWXdqffquktvjo5vD0_D88uTs8OA8tFGGfVgB47IEVmUSWZVDmWXAQfIojSFjmCOnqoqhlCqhVe7jJ6PCaYplwlnEcJXsT3zbIW9UWfgMvpBonW6kexNWavFXMfpe3NlnAQAJIkfvsDN1cPZpUF0vGt0Vqq7ld2eBNPFgHMUjuvUPfbCDM76fQKBIaUpxjLT5O9JPltn5PbA9AezQ_qhAxbir8LuK6a74Bf8Xlo0</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Li, Zeqian</creator><creator>Wang, Shilong</creator><creator>Cui, Hai</creator><creator>Liu, Xiaoxia</creator><creator>Zhang, Yijia</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240610</creationdate><title>Spatiotemporal constrained RNA–protein heterogeneous network for protein complex identification</title><author>Li, Zeqian ; Wang, Shilong ; Cui, Hai ; Liu, Xiaoxia ; Zhang, Yijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o293t-f148ad14f9a34fb1d99181a82751943b380ef51dae60fb856627518073d684243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biological effects</topic><topic>Biomolecules</topic><topic>Computational Biology - methods</topic><topic>Constraints</topic><topic>Embedding</topic><topic>Humans</topic><topic>Information processing</topic><topic>Networks</topic><topic>Problem Solving Protocol</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Interaction Maps</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><topic>Source code</topic><topic>Spatiotemporal data</topic><topic>Tightness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zeqian</creatorcontrib><creatorcontrib>Wang, Shilong</creatorcontrib><creatorcontrib>Cui, Hai</creatorcontrib><creatorcontrib>Liu, Xiaoxia</creatorcontrib><creatorcontrib>Zhang, Yijia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zeqian</au><au>Wang, Shilong</au><au>Cui, Hai</au><au>Liu, Xiaoxia</au><au>Zhang, Yijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal constrained RNA–protein heterogeneous network for protein complex identification</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2024-06-10</date><risdate>2024</risdate><volume>25</volume><issue>4</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract
The identification of protein complexes from protein interaction networks is crucial in the understanding of protein function, cellular processes and disease mechanisms. Existing methods commonly rely on the assumption that protein interaction networks are highly reliable, yet in reality, there is considerable noise in the data. In addition, these methods fail to account for the regulatory roles of biomolecules during the formation of protein complexes, which is crucial for understanding the generation of protein interactions. To this end, we propose a SpatioTemporal constrained RNA–protein heterogeneous network for Protein Complex Identification (STRPCI). STRPCI first constructs a multiplex heterogeneous protein information network to capture deep semantic information by extracting spatiotemporal interaction patterns. Then, it utilizes a dual-view aggregator to aggregate heterogeneous neighbor information from different layers. Finally, through contrastive learning, STRPCI collaboratively optimizes the protein embedding representations under different spatiotemporal interaction patterns. Based on the protein embedding similarity, STRPCI reweights the protein interaction network and identifies protein complexes with core-attachment strategy. By considering the spatiotemporal constraints and biomolecular regulatory factors of protein interactions, STRPCI measures the tightness of interactions, thus mitigating the impact of noisy data on complex identification. Evaluation results on four real PPI networks demonstrate the effectiveness and strong biological significance of STRPCI. The source code implementation of STRPCI is available from https://github.com/LI-jasm/STRPCI.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38856171</pmid><doi>10.1093/bib/bbae280</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2024-06, Vol.25 (4) |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11163383 |
source | MEDLINE; PubMed Central (Open Access); Oxford Journals Open Access Collection |
subjects | Algorithms Biological effects Biomolecules Computational Biology - methods Constraints Embedding Humans Information processing Networks Problem Solving Protocol Protein interaction Protein Interaction Mapping - methods Protein Interaction Maps Proteins Proteins - chemistry Proteins - metabolism RNA - chemistry RNA - metabolism Source code Spatiotemporal data Tightness |
title | Spatiotemporal constrained RNA–protein heterogeneous network for protein complex identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20constrained%20RNA%E2%80%93protein%20heterogeneous%20network%20for%20protein%20complex%20identification&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Li,%20Zeqian&rft.date=2024-06-10&rft.volume=25&rft.issue=4&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbae280&rft_dat=%3Cproquest_pubme%3E3103007034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103007034&rft_id=info:pmid/38856171&rft_oup_id=10.1093/bib/bbae280&rfr_iscdi=true |