APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance

Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against vario...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-06, Vol.52 (10), p.5676-5697
Hauptverfasser: Wu, Cheng-Kuei, Shiu, Jia-Lin, Wu, Chao-Liang, Hung, Chi-Feng, Ho, Yen-Chih, Chen, Yen-Tzu, Tung, Sheng-Yung, Yeh, Cheng-Fa, Shen, Che-Hung, Liaw, Hungjiun, Su, Wen-Pin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5697
container_issue 10
container_start_page 5676
container_title Nucleic acids research
container_volume 52
creator Wu, Cheng-Kuei
Shiu, Jia-Lin
Wu, Chao-Liang
Hung, Chi-Feng
Ho, Yen-Chih
Chen, Yen-Tzu
Tung, Sheng-Yung
Yeh, Cheng-Fa
Shen, Che-Hung
Liaw, Hungjiun
Su, Wen-Pin
description Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against various DNA-damaging agents. PARP1 binds to and is activated by stalled forks to facilitate fork reversal. Aprataxin and polynucleotide kinase/phosphatase-like factor (APLF) binds to PARP1 through the poly(ADP-ribose) zinc finger (PBZ) domain and is known to be involved in non-homologous end joining (NHEJ). Here, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We demonstrate that PARP1 activity facilitates the APLF recruitment to stalled forks, enabling the FANCD2 recruitment to stalled forks. The depletion of APLF sensitizes cells to cisplatin, impairs ICL repair, reduces the FANCD2 recruitment to stalled forks, and results in nascent DNA degradation by MRE11 nucleases. Additionally, cisplatin-resistant cancer cells show high levels of APLF and homologous recombination-related gene expression. The depletion of APLF sensitizes cells to cisplatin and results in fork instability. Our results reveal the novel function of APLF to facilitate ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.
doi_str_mv 10.1093/nar/gkae211
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11162786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2974007982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-719487098e3bbf58a0b725eada800986e615214b11f628093d1b7ba9c4bc82f43</originalsourceid><addsrcrecordid>eNpVkUFvGyEQhVHUKnbdnHKPOFaqtmFYdpc9RZZbt5WsJIf0jFg8mxCvYQM4Uv99cexE6YmB9-kNM4-Qc2DfgLXlpdPh8n6jkQOckCmUNS9EW_MPZMpKVhXAhJyQTzE-MgYCKnFKJqWsOBOsmZJxfrta0l4bO9ikE0ZqXcIQU9BuTb9fz6kJPsbBug0NOGob6F7I5WCNTtY72vuwoWPwCc3LPXlqvOsxUGPjOGTIZT7amLQz-Jl87PUQ8ex4zsif5Y-7xa9idfPz92K-KkwpWCoaaIVsWCux7Lq-kpp1Da9Qr7Vk-bXGGioOogPoay7zGtbQNZ1ujeiM5L0oZ-Tq4Dvuui2uDbo80qDGYLc6_FVeW_W_4uyDuvfPCgBq3sg6O3w5OgT_tMOY1NZGg8OgHfpdVLxtBGNNK3lGvx7Ql2UF7N_6AFP7kFQOSR1DyvTF-6-9sa-plP8ANCqRIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2974007982</pqid></control><display><type>article</type><title>APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Cheng-Kuei ; Shiu, Jia-Lin ; Wu, Chao-Liang ; Hung, Chi-Feng ; Ho, Yen-Chih ; Chen, Yen-Tzu ; Tung, Sheng-Yung ; Yeh, Cheng-Fa ; Shen, Che-Hung ; Liaw, Hungjiun ; Su, Wen-Pin</creator><creatorcontrib>Wu, Cheng-Kuei ; Shiu, Jia-Lin ; Wu, Chao-Liang ; Hung, Chi-Feng ; Ho, Yen-Chih ; Chen, Yen-Tzu ; Tung, Sheng-Yung ; Yeh, Cheng-Fa ; Shen, Che-Hung ; Liaw, Hungjiun ; Su, Wen-Pin</creatorcontrib><description>Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against various DNA-damaging agents. PARP1 binds to and is activated by stalled forks to facilitate fork reversal. Aprataxin and polynucleotide kinase/phosphatase-like factor (APLF) binds to PARP1 through the poly(ADP-ribose) zinc finger (PBZ) domain and is known to be involved in non-homologous end joining (NHEJ). Here, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We demonstrate that PARP1 activity facilitates the APLF recruitment to stalled forks, enabling the FANCD2 recruitment to stalled forks. The depletion of APLF sensitizes cells to cisplatin, impairs ICL repair, reduces the FANCD2 recruitment to stalled forks, and results in nascent DNA degradation by MRE11 nucleases. Additionally, cisplatin-resistant cancer cells show high levels of APLF and homologous recombination-related gene expression. The depletion of APLF sensitizes cells to cisplatin and results in fork instability. Our results reveal the novel function of APLF to facilitate ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae211</identifier><identifier>PMID: 38520407</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Antineoplastic Agents - pharmacology ; Cell Line, Tumor ; Cisplatin - pharmacology ; DNA - genetics ; DNA - metabolism ; DNA Breaks, Double-Stranded ; DNA Damage ; DNA Repair ; DNA Replication - drug effects ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drug Resistance, Neoplasm - genetics ; Fanconi Anemia Complementation Group D2 Protein - genetics ; Fanconi Anemia Complementation Group D2 Protein - metabolism ; Genome Integrity, Repair and ; Humans ; Poly (ADP-Ribose) Polymerase-1 - genetics ; Poly (ADP-Ribose) Polymerase-1 - metabolism ; Poly-ADP-Ribose Binding Proteins</subject><ispartof>Nucleic acids research, 2024-06, Vol.52 (10), p.5676-5697</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-719487098e3bbf58a0b725eada800986e615214b11f628093d1b7ba9c4bc82f43</cites><orcidid>0000-0003-0863-203X ; 0000-0002-3481-709X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162786/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162786/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38520407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Cheng-Kuei</creatorcontrib><creatorcontrib>Shiu, Jia-Lin</creatorcontrib><creatorcontrib>Wu, Chao-Liang</creatorcontrib><creatorcontrib>Hung, Chi-Feng</creatorcontrib><creatorcontrib>Ho, Yen-Chih</creatorcontrib><creatorcontrib>Chen, Yen-Tzu</creatorcontrib><creatorcontrib>Tung, Sheng-Yung</creatorcontrib><creatorcontrib>Yeh, Cheng-Fa</creatorcontrib><creatorcontrib>Shen, Che-Hung</creatorcontrib><creatorcontrib>Liaw, Hungjiun</creatorcontrib><creatorcontrib>Su, Wen-Pin</creatorcontrib><title>APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against various DNA-damaging agents. PARP1 binds to and is activated by stalled forks to facilitate fork reversal. Aprataxin and polynucleotide kinase/phosphatase-like factor (APLF) binds to PARP1 through the poly(ADP-ribose) zinc finger (PBZ) domain and is known to be involved in non-homologous end joining (NHEJ). Here, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We demonstrate that PARP1 activity facilitates the APLF recruitment to stalled forks, enabling the FANCD2 recruitment to stalled forks. The depletion of APLF sensitizes cells to cisplatin, impairs ICL repair, reduces the FANCD2 recruitment to stalled forks, and results in nascent DNA degradation by MRE11 nucleases. Additionally, cisplatin-resistant cancer cells show high levels of APLF and homologous recombination-related gene expression. The depletion of APLF sensitizes cells to cisplatin and results in fork instability. Our results reveal the novel function of APLF to facilitate ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.</description><subject>Antineoplastic Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cisplatin - pharmacology</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA Replication - drug effects</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Fanconi Anemia Complementation Group D2 Protein - genetics</subject><subject>Fanconi Anemia Complementation Group D2 Protein - metabolism</subject><subject>Genome Integrity, Repair and</subject><subject>Humans</subject><subject>Poly (ADP-Ribose) Polymerase-1 - genetics</subject><subject>Poly (ADP-Ribose) Polymerase-1 - metabolism</subject><subject>Poly-ADP-Ribose Binding Proteins</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFvGyEQhVHUKnbdnHKPOFaqtmFYdpc9RZZbt5WsJIf0jFg8mxCvYQM4Uv99cexE6YmB9-kNM4-Qc2DfgLXlpdPh8n6jkQOckCmUNS9EW_MPZMpKVhXAhJyQTzE-MgYCKnFKJqWsOBOsmZJxfrta0l4bO9ikE0ZqXcIQU9BuTb9fz6kJPsbBug0NOGob6F7I5WCNTtY72vuwoWPwCc3LPXlqvOsxUGPjOGTIZT7amLQz-Jl87PUQ8ex4zsif5Y-7xa9idfPz92K-KkwpWCoaaIVsWCux7Lq-kpp1Da9Qr7Vk-bXGGioOogPoay7zGtbQNZ1ujeiM5L0oZ-Tq4Dvuui2uDbo80qDGYLc6_FVeW_W_4uyDuvfPCgBq3sg6O3w5OgT_tMOY1NZGg8OgHfpdVLxtBGNNK3lGvx7Ql2UF7N_6AFP7kFQOSR1DyvTF-6-9sa-plP8ANCqRIA</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Wu, Cheng-Kuei</creator><creator>Shiu, Jia-Lin</creator><creator>Wu, Chao-Liang</creator><creator>Hung, Chi-Feng</creator><creator>Ho, Yen-Chih</creator><creator>Chen, Yen-Tzu</creator><creator>Tung, Sheng-Yung</creator><creator>Yeh, Cheng-Fa</creator><creator>Shen, Che-Hung</creator><creator>Liaw, Hungjiun</creator><creator>Su, Wen-Pin</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0863-203X</orcidid><orcidid>https://orcid.org/0000-0002-3481-709X</orcidid></search><sort><creationdate>20240610</creationdate><title>APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance</title><author>Wu, Cheng-Kuei ; Shiu, Jia-Lin ; Wu, Chao-Liang ; Hung, Chi-Feng ; Ho, Yen-Chih ; Chen, Yen-Tzu ; Tung, Sheng-Yung ; Yeh, Cheng-Fa ; Shen, Che-Hung ; Liaw, Hungjiun ; Su, Wen-Pin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-719487098e3bbf58a0b725eada800986e615214b11f628093d1b7ba9c4bc82f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antineoplastic Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cisplatin - pharmacology</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA Replication - drug effects</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Fanconi Anemia Complementation Group D2 Protein - genetics</topic><topic>Fanconi Anemia Complementation Group D2 Protein - metabolism</topic><topic>Genome Integrity, Repair and</topic><topic>Humans</topic><topic>Poly (ADP-Ribose) Polymerase-1 - genetics</topic><topic>Poly (ADP-Ribose) Polymerase-1 - metabolism</topic><topic>Poly-ADP-Ribose Binding Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Cheng-Kuei</creatorcontrib><creatorcontrib>Shiu, Jia-Lin</creatorcontrib><creatorcontrib>Wu, Chao-Liang</creatorcontrib><creatorcontrib>Hung, Chi-Feng</creatorcontrib><creatorcontrib>Ho, Yen-Chih</creatorcontrib><creatorcontrib>Chen, Yen-Tzu</creatorcontrib><creatorcontrib>Tung, Sheng-Yung</creatorcontrib><creatorcontrib>Yeh, Cheng-Fa</creatorcontrib><creatorcontrib>Shen, Che-Hung</creatorcontrib><creatorcontrib>Liaw, Hungjiun</creatorcontrib><creatorcontrib>Su, Wen-Pin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Cheng-Kuei</au><au>Shiu, Jia-Lin</au><au>Wu, Chao-Liang</au><au>Hung, Chi-Feng</au><au>Ho, Yen-Chih</au><au>Chen, Yen-Tzu</au><au>Tung, Sheng-Yung</au><au>Yeh, Cheng-Fa</au><au>Shen, Che-Hung</au><au>Liaw, Hungjiun</au><au>Su, Wen-Pin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-06-10</date><risdate>2024</risdate><volume>52</volume><issue>10</issue><spage>5676</spage><epage>5697</epage><pages>5676-5697</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against various DNA-damaging agents. PARP1 binds to and is activated by stalled forks to facilitate fork reversal. Aprataxin and polynucleotide kinase/phosphatase-like factor (APLF) binds to PARP1 through the poly(ADP-ribose) zinc finger (PBZ) domain and is known to be involved in non-homologous end joining (NHEJ). Here, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We demonstrate that PARP1 activity facilitates the APLF recruitment to stalled forks, enabling the FANCD2 recruitment to stalled forks. The depletion of APLF sensitizes cells to cisplatin, impairs ICL repair, reduces the FANCD2 recruitment to stalled forks, and results in nascent DNA degradation by MRE11 nucleases. Additionally, cisplatin-resistant cancer cells show high levels of APLF and homologous recombination-related gene expression. The depletion of APLF sensitizes cells to cisplatin and results in fork instability. Our results reveal the novel function of APLF to facilitate ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38520407</pmid><doi>10.1093/nar/gkae211</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0863-203X</orcidid><orcidid>https://orcid.org/0000-0002-3481-709X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2024-06, Vol.52 (10), p.5676-5697
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11162786
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Antineoplastic Agents - pharmacology
Cell Line, Tumor
Cisplatin - pharmacology
DNA - genetics
DNA - metabolism
DNA Breaks, Double-Stranded
DNA Damage
DNA Repair
DNA Replication - drug effects
DNA-(Apurinic or Apyrimidinic Site) Lyase
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drug Resistance, Neoplasm - genetics
Fanconi Anemia Complementation Group D2 Protein - genetics
Fanconi Anemia Complementation Group D2 Protein - metabolism
Genome Integrity, Repair and
Humans
Poly (ADP-Ribose) Polymerase-1 - genetics
Poly (ADP-Ribose) Polymerase-1 - metabolism
Poly-ADP-Ribose Binding Proteins
title APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APLF%20facilitates%20interstrand%20DNA%20crosslink%20repair%20and%20replication%20fork%20protection%20to%20confer%20cisplatin%20resistance&rft.jtitle=Nucleic%20acids%20research&rft.au=Wu,%20Cheng-Kuei&rft.date=2024-06-10&rft.volume=52&rft.issue=10&rft.spage=5676&rft.epage=5697&rft.pages=5676-5697&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae211&rft_dat=%3Cproquest_pubme%3E2974007982%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2974007982&rft_id=info:pmid/38520407&rfr_iscdi=true