Atomic resolution structure of full-length human insulin fibrils

Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-06, Vol.121 (23), p.e2401458121
Hauptverfasser: Suladze, Saba, Sarkar, Riddhiman, Rodina, Natalia, Bokvist, Krister, Krewinkel, Manuel, Scheps, Daniel, Nagel, Norbert, Bardiaux, Benjamin, Reif, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page e2401458121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Suladze, Saba
Sarkar, Riddhiman
Rodina, Natalia
Bokvist, Krister
Krewinkel, Manuel
Scheps, Daniel
Nagel, Norbert
Bardiaux, Benjamin
Reif, Bernd
description Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two β-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.
doi_str_mv 10.1073/pnas.2401458121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11161806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062528672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-1f7ae5f22ac8dc4ac5b3dec0ad335484b68ebe0570ef755a032dca0aec06cbf33</originalsourceid><addsrcrecordid>eNpdkctP3DAQxi3UCrbAubcqUi_0EBi_EufUrlBbkFbqBc6W49iskWNv7Rip_z2JlkfhNNLMb755fAh9xnCOoaUXu6DyOWGAGReY4AO0wtDhumEdfEArANLWghF2hD7lfA8AHRdwiI6oENC1GK_Qj_UUR6erZHL0ZXIxVHlKRU8lmSrayhbva2_C3bSttmVUoXIhF-9CZV2fnM8n6KNVPpvTp3iMbn_9vLm8qjd_fl9frje1ZhimGttWGW4JUVoMminNezoYDWqglDPB-kaY3gBvwdiWcwWUDFqBmpFG95bSY_R9r7sr_WgGbcKUlJe75EaV_smonHxbCW4r7-KDxBg3WEAzK3zbK2zf9V2tN3LJAeMd45w84Jk9e5qW4t9i8iRHl7XxXgUTS5YUGsKJaFoyo1_fofexpDD_YqE4MEboMvxiT-kUc07GvmyAQS5WysVK-Wrl3PHl_4Nf-Gfv6CNeG5sp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065044236</pqid></control><display><type>article</type><title>Atomic resolution structure of full-length human insulin fibrils</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Suladze, Saba ; Sarkar, Riddhiman ; Rodina, Natalia ; Bokvist, Krister ; Krewinkel, Manuel ; Scheps, Daniel ; Nagel, Norbert ; Bardiaux, Benjamin ; Reif, Bernd</creator><creatorcontrib>Suladze, Saba ; Sarkar, Riddhiman ; Rodina, Natalia ; Bokvist, Krister ; Krewinkel, Manuel ; Scheps, Daniel ; Nagel, Norbert ; Bardiaux, Benjamin ; Reif, Bernd</creatorcontrib><description>Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two β-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2401458121</identifier><identifier>PMID: 38809711</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amyloid - chemistry ; Amyloid - metabolism ; Amyloidosis ; Atomic structure ; Biological Physics ; Biological Sciences ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Type 1 - drug therapy ; Dimerization ; Drug development ; Fibrils ; Humans ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Insulin ; Insulin - chemistry ; Insulin - metabolism ; Magnetic Resonance Spectroscopy ; Models, Molecular ; NMR spectroscopy ; Nucleation ; Oligomerization ; Physics ; Protein Conformation ; Unit cell</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (23), p.e2401458121</ispartof><rights>Copyright National Academy of Sciences Jun 4, 2024</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c410t-1f7ae5f22ac8dc4ac5b3dec0ad335484b68ebe0570ef755a032dca0aec06cbf33</cites><orcidid>0000-0002-3095-3262 ; 0000-0001-6226-1570 ; 0000-0001-9055-7897 ; 0000-0001-5860-7014 ; 0000-0001-7368-7198 ; 0009-0005-8784-3629 ; 0009-0008-7285-5039 ; 0000-0003-4014-9195 ; 0000-0002-8367-0186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161806/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161806/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38809711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04594552$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Suladze, Saba</creatorcontrib><creatorcontrib>Sarkar, Riddhiman</creatorcontrib><creatorcontrib>Rodina, Natalia</creatorcontrib><creatorcontrib>Bokvist, Krister</creatorcontrib><creatorcontrib>Krewinkel, Manuel</creatorcontrib><creatorcontrib>Scheps, Daniel</creatorcontrib><creatorcontrib>Nagel, Norbert</creatorcontrib><creatorcontrib>Bardiaux, Benjamin</creatorcontrib><creatorcontrib>Reif, Bernd</creatorcontrib><title>Atomic resolution structure of full-length human insulin fibrils</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two β-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.</description><subject>Amyloid - chemistry</subject><subject>Amyloid - metabolism</subject><subject>Amyloidosis</subject><subject>Atomic structure</subject><subject>Biological Physics</subject><subject>Biological Sciences</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - drug therapy</subject><subject>Dimerization</subject><subject>Drug development</subject><subject>Fibrils</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Insulin</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>NMR spectroscopy</subject><subject>Nucleation</subject><subject>Oligomerization</subject><subject>Physics</subject><subject>Protein Conformation</subject><subject>Unit cell</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctP3DAQxi3UCrbAubcqUi_0EBi_EufUrlBbkFbqBc6W49iskWNv7Rip_z2JlkfhNNLMb755fAh9xnCOoaUXu6DyOWGAGReY4AO0wtDhumEdfEArANLWghF2hD7lfA8AHRdwiI6oENC1GK_Qj_UUR6erZHL0ZXIxVHlKRU8lmSrayhbva2_C3bSttmVUoXIhF-9CZV2fnM8n6KNVPpvTp3iMbn_9vLm8qjd_fl9frje1ZhimGttWGW4JUVoMminNezoYDWqglDPB-kaY3gBvwdiWcwWUDFqBmpFG95bSY_R9r7sr_WgGbcKUlJe75EaV_smonHxbCW4r7-KDxBg3WEAzK3zbK2zf9V2tN3LJAeMd45w84Jk9e5qW4t9i8iRHl7XxXgUTS5YUGsKJaFoyo1_fofexpDD_YqE4MEboMvxiT-kUc07GvmyAQS5WysVK-Wrl3PHl_4Nf-Gfv6CNeG5sp</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Suladze, Saba</creator><creator>Sarkar, Riddhiman</creator><creator>Rodina, Natalia</creator><creator>Bokvist, Krister</creator><creator>Krewinkel, Manuel</creator><creator>Scheps, Daniel</creator><creator>Nagel, Norbert</creator><creator>Bardiaux, Benjamin</creator><creator>Reif, Bernd</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3095-3262</orcidid><orcidid>https://orcid.org/0000-0001-6226-1570</orcidid><orcidid>https://orcid.org/0000-0001-9055-7897</orcidid><orcidid>https://orcid.org/0000-0001-5860-7014</orcidid><orcidid>https://orcid.org/0000-0001-7368-7198</orcidid><orcidid>https://orcid.org/0009-0005-8784-3629</orcidid><orcidid>https://orcid.org/0009-0008-7285-5039</orcidid><orcidid>https://orcid.org/0000-0003-4014-9195</orcidid><orcidid>https://orcid.org/0000-0002-8367-0186</orcidid></search><sort><creationdate>20240604</creationdate><title>Atomic resolution structure of full-length human insulin fibrils</title><author>Suladze, Saba ; Sarkar, Riddhiman ; Rodina, Natalia ; Bokvist, Krister ; Krewinkel, Manuel ; Scheps, Daniel ; Nagel, Norbert ; Bardiaux, Benjamin ; Reif, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-1f7ae5f22ac8dc4ac5b3dec0ad335484b68ebe0570ef755a032dca0aec06cbf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amyloid - chemistry</topic><topic>Amyloid - metabolism</topic><topic>Amyloidosis</topic><topic>Atomic structure</topic><topic>Biological Physics</topic><topic>Biological Sciences</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - drug therapy</topic><topic>Dimerization</topic><topic>Drug development</topic><topic>Fibrils</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Insulin</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>NMR spectroscopy</topic><topic>Nucleation</topic><topic>Oligomerization</topic><topic>Physics</topic><topic>Protein Conformation</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suladze, Saba</creatorcontrib><creatorcontrib>Sarkar, Riddhiman</creatorcontrib><creatorcontrib>Rodina, Natalia</creatorcontrib><creatorcontrib>Bokvist, Krister</creatorcontrib><creatorcontrib>Krewinkel, Manuel</creatorcontrib><creatorcontrib>Scheps, Daniel</creatorcontrib><creatorcontrib>Nagel, Norbert</creatorcontrib><creatorcontrib>Bardiaux, Benjamin</creatorcontrib><creatorcontrib>Reif, Bernd</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suladze, Saba</au><au>Sarkar, Riddhiman</au><au>Rodina, Natalia</au><au>Bokvist, Krister</au><au>Krewinkel, Manuel</au><au>Scheps, Daniel</au><au>Nagel, Norbert</au><au>Bardiaux, Benjamin</au><au>Reif, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic resolution structure of full-length human insulin fibrils</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-06-04</date><risdate>2024</risdate><volume>121</volume><issue>23</issue><spage>e2401458121</spage><pages>e2401458121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two β-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38809711</pmid><doi>10.1073/pnas.2401458121</doi><orcidid>https://orcid.org/0000-0002-3095-3262</orcidid><orcidid>https://orcid.org/0000-0001-6226-1570</orcidid><orcidid>https://orcid.org/0000-0001-9055-7897</orcidid><orcidid>https://orcid.org/0000-0001-5860-7014</orcidid><orcidid>https://orcid.org/0000-0001-7368-7198</orcidid><orcidid>https://orcid.org/0009-0005-8784-3629</orcidid><orcidid>https://orcid.org/0009-0008-7285-5039</orcidid><orcidid>https://orcid.org/0000-0003-4014-9195</orcidid><orcidid>https://orcid.org/0000-0002-8367-0186</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (23), p.e2401458121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11161806
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amyloid - chemistry
Amyloid - metabolism
Amyloidosis
Atomic structure
Biological Physics
Biological Sciences
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - drug therapy
Dimerization
Drug development
Fibrils
Humans
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Insulin
Insulin - chemistry
Insulin - metabolism
Magnetic Resonance Spectroscopy
Models, Molecular
NMR spectroscopy
Nucleation
Oligomerization
Physics
Protein Conformation
Unit cell
title Atomic resolution structure of full-length human insulin fibrils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20resolution%20structure%20of%20full-length%20human%20insulin%20fibrils&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Suladze,%20Saba&rft.date=2024-06-04&rft.volume=121&rft.issue=23&rft.spage=e2401458121&rft.pages=e2401458121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2401458121&rft_dat=%3Cproquest_pubme%3E3062528672%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065044236&rft_id=info:pmid/38809711&rfr_iscdi=true