Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2

Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91 ), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-06, Vol.121 (23), p.e2320388121
Hauptverfasser: Liang, Shiyu, Liu, Aijun, Liu, Yezhou, Wang, Fuxing, Zhou, Youli, Long, Yuanzhengyang, Wang, Tao, Liu, Zheng, Ren, Ruobing, Ye, Richard D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page e2320388121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Liang, Shiyu
Liu, Aijun
Liu, Yezhou
Wang, Fuxing
Zhou, Youli
Long, Yuanzhengyang
Wang, Tao
Liu, Zheng
Ren, Ruobing
Ye, Richard D
description Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91 ), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22 heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22 are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.
doi_str_mv 10.1073/pnas.2320388121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11161758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061781332</sourcerecordid><originalsourceid>FETCH-LOGICAL-p295t-52190d6e87af53870e36dee450f5f8f6ff49735c431ab3a68cf3185be73ff7ae3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK2evcmCFy-ps1_J5iSl1lYQK1bBW9gku21Kuhuzidh_b8Qq6mkY5uHhnRehUwJDAhG7rKzyQ8ooMCkJJXuoTyAmQchj2Ed9ABoFklPeQ0ferwEgFhIOUa-jQVDJ-2i6aOo2a9palThVvvDYuBpPHucLnBY2L-wSNw6v2o2yuFqppcu2jcb3o-uHGXbvRa58t81f6DE6MKr0-mQ3B-j5ZvI0ngV38-nteHQXVDQWTSAoiSEPtYyUEUxGoFmYa80FGGGkCY3hccRExhlRKVOhzAwjUqQ6YsZESrMBuvryVm260XmmbdNFT6q62Kh6mzhVJH8vtlglS_eWEEJCEgnZGS52htq9tto3yabwmS5LZbVrfcKg4yRhjHbo-T907dradv99UgI4h5h11NnvSD9ZvktmH_yffeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065044093</pqid></control><display><type>article</type><title>Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liang, Shiyu ; Liu, Aijun ; Liu, Yezhou ; Wang, Fuxing ; Zhou, Youli ; Long, Yuanzhengyang ; Wang, Tao ; Liu, Zheng ; Ren, Ruobing ; Ye, Richard D</creator><creatorcontrib>Liang, Shiyu ; Liu, Aijun ; Liu, Yezhou ; Wang, Fuxing ; Zhou, Youli ; Long, Yuanzhengyang ; Wang, Tao ; Liu, Zheng ; Ren, Ruobing ; Ye, Richard D</creatorcontrib><description>Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91 ), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22 heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22 are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2320388121</identifier><identifier>PMID: 38805284</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>12-O-Tetradecanoylphorbol-13-acetate ; Acetic acid ; Adenine ; Binding Sites ; Biological Sciences ; Cell surface ; Chronic granulomatous disease ; Cryoelectron Microscopy ; CYBB protein ; Flavin ; Flavin-adenine dinucleotide ; Genetic disorders ; Granulomatous Disease, Chronic - genetics ; Granulomatous Disease, Chronic - metabolism ; Helices ; Humans ; Hydrogen bonding ; Hydrogen bonds ; Leukocytes (neutrophilic) ; Models, Molecular ; NAD(P)H oxidase ; NADPH Oxidase 2 - chemistry ; NADPH Oxidase 2 - genetics ; NADPH Oxidase 2 - metabolism ; NADPH Oxidases - chemistry ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; Oxidase ; Phagocytes - metabolism ; Protein Binding ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Superoxide</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (23), p.e2320388121</ispartof><rights>Copyright National Academy of Sciences Jun 4, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3538-9349 ; 0000-0001-7575-8260 ; 0000-0002-2164-5620 ; 0009-0009-7909-3230 ; 0000-0003-4517-7216 ; 0009-0005-0812-183X ; 0009-0002-0261-3727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161758/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161758/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38805284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Shiyu</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><creatorcontrib>Liu, Yezhou</creatorcontrib><creatorcontrib>Wang, Fuxing</creatorcontrib><creatorcontrib>Zhou, Youli</creatorcontrib><creatorcontrib>Long, Yuanzhengyang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Ren, Ruobing</creatorcontrib><creatorcontrib>Ye, Richard D</creatorcontrib><title>Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91 ), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22 heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22 are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.</description><subject>12-O-Tetradecanoylphorbol-13-acetate</subject><subject>Acetic acid</subject><subject>Adenine</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cell surface</subject><subject>Chronic granulomatous disease</subject><subject>Cryoelectron Microscopy</subject><subject>CYBB protein</subject><subject>Flavin</subject><subject>Flavin-adenine dinucleotide</subject><subject>Genetic disorders</subject><subject>Granulomatous Disease, Chronic - genetics</subject><subject>Granulomatous Disease, Chronic - metabolism</subject><subject>Helices</subject><subject>Humans</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Leukocytes (neutrophilic)</subject><subject>Models, Molecular</subject><subject>NAD(P)H oxidase</subject><subject>NADPH Oxidase 2 - chemistry</subject><subject>NADPH Oxidase 2 - genetics</subject><subject>NADPH Oxidase 2 - metabolism</subject><subject>NADPH Oxidases - chemistry</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Oxidase</subject><subject>Phagocytes - metabolism</subject><subject>Protein Binding</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Superoxide</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbK2evcmCFy-ps1_J5iSl1lYQK1bBW9gku21Kuhuzidh_b8Qq6mkY5uHhnRehUwJDAhG7rKzyQ8ooMCkJJXuoTyAmQchj2Ed9ABoFklPeQ0ferwEgFhIOUa-jQVDJ-2i6aOo2a9palThVvvDYuBpPHucLnBY2L-wSNw6v2o2yuFqppcu2jcb3o-uHGXbvRa58t81f6DE6MKr0-mQ3B-j5ZvI0ngV38-nteHQXVDQWTSAoiSEPtYyUEUxGoFmYa80FGGGkCY3hccRExhlRKVOhzAwjUqQ6YsZESrMBuvryVm260XmmbdNFT6q62Kh6mzhVJH8vtlglS_eWEEJCEgnZGS52htq9tto3yabwmS5LZbVrfcKg4yRhjHbo-T907dradv99UgI4h5h11NnvSD9ZvktmH_yffeA</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Liang, Shiyu</creator><creator>Liu, Aijun</creator><creator>Liu, Yezhou</creator><creator>Wang, Fuxing</creator><creator>Zhou, Youli</creator><creator>Long, Yuanzhengyang</creator><creator>Wang, Tao</creator><creator>Liu, Zheng</creator><creator>Ren, Ruobing</creator><creator>Ye, Richard D</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3538-9349</orcidid><orcidid>https://orcid.org/0000-0001-7575-8260</orcidid><orcidid>https://orcid.org/0000-0002-2164-5620</orcidid><orcidid>https://orcid.org/0009-0009-7909-3230</orcidid><orcidid>https://orcid.org/0000-0003-4517-7216</orcidid><orcidid>https://orcid.org/0009-0005-0812-183X</orcidid><orcidid>https://orcid.org/0009-0002-0261-3727</orcidid></search><sort><creationdate>20240604</creationdate><title>Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2</title><author>Liang, Shiyu ; Liu, Aijun ; Liu, Yezhou ; Wang, Fuxing ; Zhou, Youli ; Long, Yuanzhengyang ; Wang, Tao ; Liu, Zheng ; Ren, Ruobing ; Ye, Richard D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p295t-52190d6e87af53870e36dee450f5f8f6ff49735c431ab3a68cf3185be73ff7ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>12-O-Tetradecanoylphorbol-13-acetate</topic><topic>Acetic acid</topic><topic>Adenine</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cell surface</topic><topic>Chronic granulomatous disease</topic><topic>Cryoelectron Microscopy</topic><topic>CYBB protein</topic><topic>Flavin</topic><topic>Flavin-adenine dinucleotide</topic><topic>Genetic disorders</topic><topic>Granulomatous Disease, Chronic - genetics</topic><topic>Granulomatous Disease, Chronic - metabolism</topic><topic>Helices</topic><topic>Humans</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Leukocytes (neutrophilic)</topic><topic>Models, Molecular</topic><topic>NAD(P)H oxidase</topic><topic>NADPH Oxidase 2 - chemistry</topic><topic>NADPH Oxidase 2 - genetics</topic><topic>NADPH Oxidase 2 - metabolism</topic><topic>NADPH Oxidases - chemistry</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Oxidase</topic><topic>Phagocytes - metabolism</topic><topic>Protein Binding</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Superoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shiyu</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><creatorcontrib>Liu, Yezhou</creatorcontrib><creatorcontrib>Wang, Fuxing</creatorcontrib><creatorcontrib>Zhou, Youli</creatorcontrib><creatorcontrib>Long, Yuanzhengyang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Ren, Ruobing</creatorcontrib><creatorcontrib>Ye, Richard D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Shiyu</au><au>Liu, Aijun</au><au>Liu, Yezhou</au><au>Wang, Fuxing</au><au>Zhou, Youli</au><au>Long, Yuanzhengyang</au><au>Wang, Tao</au><au>Liu, Zheng</au><au>Ren, Ruobing</au><au>Ye, Richard D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-06-04</date><risdate>2024</risdate><volume>121</volume><issue>23</issue><spage>e2320388121</spage><pages>e2320388121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91 ), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22 heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22 are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38805284</pmid><doi>10.1073/pnas.2320388121</doi><orcidid>https://orcid.org/0000-0002-3538-9349</orcidid><orcidid>https://orcid.org/0000-0001-7575-8260</orcidid><orcidid>https://orcid.org/0000-0002-2164-5620</orcidid><orcidid>https://orcid.org/0009-0009-7909-3230</orcidid><orcidid>https://orcid.org/0000-0003-4517-7216</orcidid><orcidid>https://orcid.org/0009-0005-0812-183X</orcidid><orcidid>https://orcid.org/0009-0002-0261-3727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (23), p.e2320388121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11161758
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 12-O-Tetradecanoylphorbol-13-acetate
Acetic acid
Adenine
Binding Sites
Biological Sciences
Cell surface
Chronic granulomatous disease
Cryoelectron Microscopy
CYBB protein
Flavin
Flavin-adenine dinucleotide
Genetic disorders
Granulomatous Disease, Chronic - genetics
Granulomatous Disease, Chronic - metabolism
Helices
Humans
Hydrogen bonding
Hydrogen bonds
Leukocytes (neutrophilic)
Models, Molecular
NAD(P)H oxidase
NADPH Oxidase 2 - chemistry
NADPH Oxidase 2 - genetics
NADPH Oxidase 2 - metabolism
NADPH Oxidases - chemistry
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
Oxidase
Phagocytes - metabolism
Protein Binding
Reactive oxygen species
Reactive Oxygen Species - metabolism
Superoxide
title Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20EROS%20binding%20to%20human%20phagocyte%20NADPH%20oxidase%20NOX2&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liang,%20Shiyu&rft.date=2024-06-04&rft.volume=121&rft.issue=23&rft.spage=e2320388121&rft.pages=e2320388121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2320388121&rft_dat=%3Cproquest_pubme%3E3061781332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065044093&rft_id=info:pmid/38805284&rfr_iscdi=true