Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2
Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91 ), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-06, Vol.121 (23), p.e2320388121 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | e2320388121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Liang, Shiyu Liu, Aijun Liu, Yezhou Wang, Fuxing Zhou, Youli Long, Yuanzhengyang Wang, Tao Liu, Zheng Ren, Ruobing Ye, Richard D |
description | Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91
), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22
heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22
are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation. |
doi_str_mv | 10.1073/pnas.2320388121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11161758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061781332</sourcerecordid><originalsourceid>FETCH-LOGICAL-p295t-52190d6e87af53870e36dee450f5f8f6ff49735c431ab3a68cf3185be73ff7ae3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK2evcmCFy-ps1_J5iSl1lYQK1bBW9gku21Kuhuzidh_b8Qq6mkY5uHhnRehUwJDAhG7rKzyQ8ooMCkJJXuoTyAmQchj2Ed9ABoFklPeQ0ferwEgFhIOUa-jQVDJ-2i6aOo2a9palThVvvDYuBpPHucLnBY2L-wSNw6v2o2yuFqppcu2jcb3o-uHGXbvRa58t81f6DE6MKr0-mQ3B-j5ZvI0ngV38-nteHQXVDQWTSAoiSEPtYyUEUxGoFmYa80FGGGkCY3hccRExhlRKVOhzAwjUqQ6YsZESrMBuvryVm260XmmbdNFT6q62Kh6mzhVJH8vtlglS_eWEEJCEgnZGS52htq9tto3yabwmS5LZbVrfcKg4yRhjHbo-T907dradv99UgI4h5h11NnvSD9ZvktmH_yffeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065044093</pqid></control><display><type>article</type><title>Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liang, Shiyu ; Liu, Aijun ; Liu, Yezhou ; Wang, Fuxing ; Zhou, Youli ; Long, Yuanzhengyang ; Wang, Tao ; Liu, Zheng ; Ren, Ruobing ; Ye, Richard D</creator><creatorcontrib>Liang, Shiyu ; Liu, Aijun ; Liu, Yezhou ; Wang, Fuxing ; Zhou, Youli ; Long, Yuanzhengyang ; Wang, Tao ; Liu, Zheng ; Ren, Ruobing ; Ye, Richard D</creatorcontrib><description>Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91
), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22
heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22
are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2320388121</identifier><identifier>PMID: 38805284</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>12-O-Tetradecanoylphorbol-13-acetate ; Acetic acid ; Adenine ; Binding Sites ; Biological Sciences ; Cell surface ; Chronic granulomatous disease ; Cryoelectron Microscopy ; CYBB protein ; Flavin ; Flavin-adenine dinucleotide ; Genetic disorders ; Granulomatous Disease, Chronic - genetics ; Granulomatous Disease, Chronic - metabolism ; Helices ; Humans ; Hydrogen bonding ; Hydrogen bonds ; Leukocytes (neutrophilic) ; Models, Molecular ; NAD(P)H oxidase ; NADPH Oxidase 2 - chemistry ; NADPH Oxidase 2 - genetics ; NADPH Oxidase 2 - metabolism ; NADPH Oxidases - chemistry ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; Oxidase ; Phagocytes - metabolism ; Protein Binding ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Superoxide</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (23), p.e2320388121</ispartof><rights>Copyright National Academy of Sciences Jun 4, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3538-9349 ; 0000-0001-7575-8260 ; 0000-0002-2164-5620 ; 0009-0009-7909-3230 ; 0000-0003-4517-7216 ; 0009-0005-0812-183X ; 0009-0002-0261-3727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161758/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161758/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38805284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Shiyu</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><creatorcontrib>Liu, Yezhou</creatorcontrib><creatorcontrib>Wang, Fuxing</creatorcontrib><creatorcontrib>Zhou, Youli</creatorcontrib><creatorcontrib>Long, Yuanzhengyang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Ren, Ruobing</creatorcontrib><creatorcontrib>Ye, Richard D</creatorcontrib><title>Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91
), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22
heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22
are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.</description><subject>12-O-Tetradecanoylphorbol-13-acetate</subject><subject>Acetic acid</subject><subject>Adenine</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cell surface</subject><subject>Chronic granulomatous disease</subject><subject>Cryoelectron Microscopy</subject><subject>CYBB protein</subject><subject>Flavin</subject><subject>Flavin-adenine dinucleotide</subject><subject>Genetic disorders</subject><subject>Granulomatous Disease, Chronic - genetics</subject><subject>Granulomatous Disease, Chronic - metabolism</subject><subject>Helices</subject><subject>Humans</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Leukocytes (neutrophilic)</subject><subject>Models, Molecular</subject><subject>NAD(P)H oxidase</subject><subject>NADPH Oxidase 2 - chemistry</subject><subject>NADPH Oxidase 2 - genetics</subject><subject>NADPH Oxidase 2 - metabolism</subject><subject>NADPH Oxidases - chemistry</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Oxidase</subject><subject>Phagocytes - metabolism</subject><subject>Protein Binding</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Superoxide</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbK2evcmCFy-ps1_J5iSl1lYQK1bBW9gku21Kuhuzidh_b8Qq6mkY5uHhnRehUwJDAhG7rKzyQ8ooMCkJJXuoTyAmQchj2Ed9ABoFklPeQ0ferwEgFhIOUa-jQVDJ-2i6aOo2a9palThVvvDYuBpPHucLnBY2L-wSNw6v2o2yuFqppcu2jcb3o-uHGXbvRa58t81f6DE6MKr0-mQ3B-j5ZvI0ngV38-nteHQXVDQWTSAoiSEPtYyUEUxGoFmYa80FGGGkCY3hccRExhlRKVOhzAwjUqQ6YsZESrMBuvryVm260XmmbdNFT6q62Kh6mzhVJH8vtlglS_eWEEJCEgnZGS52htq9tto3yabwmS5LZbVrfcKg4yRhjHbo-T907dradv99UgI4h5h11NnvSD9ZvktmH_yffeA</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Liang, Shiyu</creator><creator>Liu, Aijun</creator><creator>Liu, Yezhou</creator><creator>Wang, Fuxing</creator><creator>Zhou, Youli</creator><creator>Long, Yuanzhengyang</creator><creator>Wang, Tao</creator><creator>Liu, Zheng</creator><creator>Ren, Ruobing</creator><creator>Ye, Richard D</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3538-9349</orcidid><orcidid>https://orcid.org/0000-0001-7575-8260</orcidid><orcidid>https://orcid.org/0000-0002-2164-5620</orcidid><orcidid>https://orcid.org/0009-0009-7909-3230</orcidid><orcidid>https://orcid.org/0000-0003-4517-7216</orcidid><orcidid>https://orcid.org/0009-0005-0812-183X</orcidid><orcidid>https://orcid.org/0009-0002-0261-3727</orcidid></search><sort><creationdate>20240604</creationdate><title>Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2</title><author>Liang, Shiyu ; Liu, Aijun ; Liu, Yezhou ; Wang, Fuxing ; Zhou, Youli ; Long, Yuanzhengyang ; Wang, Tao ; Liu, Zheng ; Ren, Ruobing ; Ye, Richard D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p295t-52190d6e87af53870e36dee450f5f8f6ff49735c431ab3a68cf3185be73ff7ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>12-O-Tetradecanoylphorbol-13-acetate</topic><topic>Acetic acid</topic><topic>Adenine</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cell surface</topic><topic>Chronic granulomatous disease</topic><topic>Cryoelectron Microscopy</topic><topic>CYBB protein</topic><topic>Flavin</topic><topic>Flavin-adenine dinucleotide</topic><topic>Genetic disorders</topic><topic>Granulomatous Disease, Chronic - genetics</topic><topic>Granulomatous Disease, Chronic - metabolism</topic><topic>Helices</topic><topic>Humans</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Leukocytes (neutrophilic)</topic><topic>Models, Molecular</topic><topic>NAD(P)H oxidase</topic><topic>NADPH Oxidase 2 - chemistry</topic><topic>NADPH Oxidase 2 - genetics</topic><topic>NADPH Oxidase 2 - metabolism</topic><topic>NADPH Oxidases - chemistry</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Oxidase</topic><topic>Phagocytes - metabolism</topic><topic>Protein Binding</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Superoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shiyu</creatorcontrib><creatorcontrib>Liu, Aijun</creatorcontrib><creatorcontrib>Liu, Yezhou</creatorcontrib><creatorcontrib>Wang, Fuxing</creatorcontrib><creatorcontrib>Zhou, Youli</creatorcontrib><creatorcontrib>Long, Yuanzhengyang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Ren, Ruobing</creatorcontrib><creatorcontrib>Ye, Richard D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Shiyu</au><au>Liu, Aijun</au><au>Liu, Yezhou</au><au>Wang, Fuxing</au><au>Zhou, Youli</au><au>Long, Yuanzhengyang</au><au>Wang, Tao</au><au>Liu, Zheng</au><au>Ren, Ruobing</au><au>Ye, Richard D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-06-04</date><risdate>2024</risdate><volume>121</volume><issue>23</issue><spage>e2320388121</spage><pages>e2320388121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91
), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22
heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22
are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple β-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38805284</pmid><doi>10.1073/pnas.2320388121</doi><orcidid>https://orcid.org/0000-0002-3538-9349</orcidid><orcidid>https://orcid.org/0000-0001-7575-8260</orcidid><orcidid>https://orcid.org/0000-0002-2164-5620</orcidid><orcidid>https://orcid.org/0009-0009-7909-3230</orcidid><orcidid>https://orcid.org/0000-0003-4517-7216</orcidid><orcidid>https://orcid.org/0009-0005-0812-183X</orcidid><orcidid>https://orcid.org/0009-0002-0261-3727</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-06, Vol.121 (23), p.e2320388121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11161758 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 12-O-Tetradecanoylphorbol-13-acetate Acetic acid Adenine Binding Sites Biological Sciences Cell surface Chronic granulomatous disease Cryoelectron Microscopy CYBB protein Flavin Flavin-adenine dinucleotide Genetic disorders Granulomatous Disease, Chronic - genetics Granulomatous Disease, Chronic - metabolism Helices Humans Hydrogen bonding Hydrogen bonds Leukocytes (neutrophilic) Models, Molecular NAD(P)H oxidase NADPH Oxidase 2 - chemistry NADPH Oxidase 2 - genetics NADPH Oxidase 2 - metabolism NADPH Oxidases - chemistry NADPH Oxidases - genetics NADPH Oxidases - metabolism Oxidase Phagocytes - metabolism Protein Binding Reactive oxygen species Reactive Oxygen Species - metabolism Superoxide |
title | Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20EROS%20binding%20to%20human%20phagocyte%20NADPH%20oxidase%20NOX2&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liang,%20Shiyu&rft.date=2024-06-04&rft.volume=121&rft.issue=23&rft.spage=e2320388121&rft.pages=e2320388121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2320388121&rft_dat=%3Cproquest_pubme%3E3061781332%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065044093&rft_id=info:pmid/38805284&rfr_iscdi=true |