The reduced net carbon uptake over Northern Hemisphere land causes the close-to-normal CO2 growth rate in 2021 La Niña
La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2...
Gespeichert in:
Veröffentlicht in: | Science advances 2024-06, Vol.10 (23), p.eadl2201 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | eadl2201 |
container_title | Science advances |
container_volume | 10 |
creator | Liu, Junjie Baker, David Basu, Sourish Bowman, Kevin Byrne, Brendan Chevallier, Frederic He, Wei Jiang, Fei Johnson, Matthew S Kubar, Terence L Li, Xing Liu, Zhiqiang Miller, Scot M Philip, Sajeev Xiao, Jingfeng Yun, Jeongmin Zeng, Ning |
description | La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change.La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change. |
doi_str_mv | 10.1126/sciadv.adl2201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11160468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065978607</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-b84e6bae7fbb9841b338437f27372af44f1cee4759918409f11db260b2ee88683</originalsourceid><addsrcrecordid>eNpVkLFu2zAURYmiQRw4WTO_sYsSPpIiqakojLYpYMRLOguk9BSrlUWVpBzks_IN_bEKqYdkuge4F2e4jF0jv0EU-jY1vWuPN64dhOD4gV0IacpClMp-fMMrdpXSL845Kq1LrM7ZSlqrrDR4wZ4e9gSR2rmhFkbK0LjowwjzlN1vgnCkCPch5j3FEe7o0KdpQYLBje2ynRMlWEpohpCoyKEYQzy4ATY7AY8xPOU9RJcJ-hEEFwhbB_f93xd3yc46NyS6OuWa_fz29WFzV2x3339svmyLCY3KhbeKtHdkOu8rq9BLaZU0nTDSCNcp1WFDpExZVWgVrzrE1gvNvSCyVlu5Zp__e6fZH6htaMzRDfUU-4OLz3Vwff2-Gft9_RiONSJqrl4Nn06GGP7MlHK9nNDQsDxAYU615LqsjNXcyH8GW3sG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065978607</pqid></control><display><type>article</type><title>The reduced net carbon uptake over Northern Hemisphere land causes the close-to-normal CO2 growth rate in 2021 La Niña</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Liu, Junjie ; Baker, David ; Basu, Sourish ; Bowman, Kevin ; Byrne, Brendan ; Chevallier, Frederic ; He, Wei ; Jiang, Fei ; Johnson, Matthew S ; Kubar, Terence L ; Li, Xing ; Liu, Zhiqiang ; Miller, Scot M ; Philip, Sajeev ; Xiao, Jingfeng ; Yun, Jeongmin ; Zeng, Ning</creator><creatorcontrib>Liu, Junjie ; Baker, David ; Basu, Sourish ; Bowman, Kevin ; Byrne, Brendan ; Chevallier, Frederic ; He, Wei ; Jiang, Fei ; Johnson, Matthew S ; Kubar, Terence L ; Li, Xing ; Liu, Zhiqiang ; Miller, Scot M ; Philip, Sajeev ; Xiao, Jingfeng ; Yun, Jeongmin ; Zeng, Ning</creatorcontrib><description>La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change.La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adl2201</identifier><identifier>PMID: 38848371</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Climatology ; Earth, Environmental, Ecological, and Space Sciences ; Environmental Studies ; SciAdv r-articles</subject><ispartof>Science advances, 2024-06, Vol.10 (23), p.eadl2201</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160468/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160468/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Liu, Junjie</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Basu, Sourish</creatorcontrib><creatorcontrib>Bowman, Kevin</creatorcontrib><creatorcontrib>Byrne, Brendan</creatorcontrib><creatorcontrib>Chevallier, Frederic</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Jiang, Fei</creatorcontrib><creatorcontrib>Johnson, Matthew S</creatorcontrib><creatorcontrib>Kubar, Terence L</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Liu, Zhiqiang</creatorcontrib><creatorcontrib>Miller, Scot M</creatorcontrib><creatorcontrib>Philip, Sajeev</creatorcontrib><creatorcontrib>Xiao, Jingfeng</creatorcontrib><creatorcontrib>Yun, Jeongmin</creatorcontrib><creatorcontrib>Zeng, Ning</creatorcontrib><title>The reduced net carbon uptake over Northern Hemisphere land causes the close-to-normal CO2 growth rate in 2021 La Niña</title><title>Science advances</title><description>La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change.La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change.</description><subject>Climatology</subject><subject>Earth, Environmental, Ecological, and Space Sciences</subject><subject>Environmental Studies</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkLFu2zAURYmiQRw4WTO_sYsSPpIiqakojLYpYMRLOguk9BSrlUWVpBzks_IN_bEKqYdkuge4F2e4jF0jv0EU-jY1vWuPN64dhOD4gV0IacpClMp-fMMrdpXSL845Kq1LrM7ZSlqrrDR4wZ4e9gSR2rmhFkbK0LjowwjzlN1vgnCkCPch5j3FEe7o0KdpQYLBje2ynRMlWEpohpCoyKEYQzy4ATY7AY8xPOU9RJcJ-hEEFwhbB_f93xd3yc46NyS6OuWa_fz29WFzV2x3339svmyLCY3KhbeKtHdkOu8rq9BLaZU0nTDSCNcp1WFDpExZVWgVrzrE1gvNvSCyVlu5Zp__e6fZH6htaMzRDfUU-4OLz3Vwff2-Gft9_RiONSJqrl4Nn06GGP7MlHK9nNDQsDxAYU615LqsjNXcyH8GW3sG</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Liu, Junjie</creator><creator>Baker, David</creator><creator>Basu, Sourish</creator><creator>Bowman, Kevin</creator><creator>Byrne, Brendan</creator><creator>Chevallier, Frederic</creator><creator>He, Wei</creator><creator>Jiang, Fei</creator><creator>Johnson, Matthew S</creator><creator>Kubar, Terence L</creator><creator>Li, Xing</creator><creator>Liu, Zhiqiang</creator><creator>Miller, Scot M</creator><creator>Philip, Sajeev</creator><creator>Xiao, Jingfeng</creator><creator>Yun, Jeongmin</creator><creator>Zeng, Ning</creator><general>American Association for the Advancement of Science</general><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240607</creationdate><title>The reduced net carbon uptake over Northern Hemisphere land causes the close-to-normal CO2 growth rate in 2021 La Niña</title><author>Liu, Junjie ; Baker, David ; Basu, Sourish ; Bowman, Kevin ; Byrne, Brendan ; Chevallier, Frederic ; He, Wei ; Jiang, Fei ; Johnson, Matthew S ; Kubar, Terence L ; Li, Xing ; Liu, Zhiqiang ; Miller, Scot M ; Philip, Sajeev ; Xiao, Jingfeng ; Yun, Jeongmin ; Zeng, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-b84e6bae7fbb9841b338437f27372af44f1cee4759918409f11db260b2ee88683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Climatology</topic><topic>Earth, Environmental, Ecological, and Space Sciences</topic><topic>Environmental Studies</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Junjie</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Basu, Sourish</creatorcontrib><creatorcontrib>Bowman, Kevin</creatorcontrib><creatorcontrib>Byrne, Brendan</creatorcontrib><creatorcontrib>Chevallier, Frederic</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Jiang, Fei</creatorcontrib><creatorcontrib>Johnson, Matthew S</creatorcontrib><creatorcontrib>Kubar, Terence L</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Liu, Zhiqiang</creatorcontrib><creatorcontrib>Miller, Scot M</creatorcontrib><creatorcontrib>Philip, Sajeev</creatorcontrib><creatorcontrib>Xiao, Jingfeng</creatorcontrib><creatorcontrib>Yun, Jeongmin</creatorcontrib><creatorcontrib>Zeng, Ning</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Junjie</au><au>Baker, David</au><au>Basu, Sourish</au><au>Bowman, Kevin</au><au>Byrne, Brendan</au><au>Chevallier, Frederic</au><au>He, Wei</au><au>Jiang, Fei</au><au>Johnson, Matthew S</au><au>Kubar, Terence L</au><au>Li, Xing</au><au>Liu, Zhiqiang</au><au>Miller, Scot M</au><au>Philip, Sajeev</au><au>Xiao, Jingfeng</au><au>Yun, Jeongmin</au><au>Zeng, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The reduced net carbon uptake over Northern Hemisphere land causes the close-to-normal CO2 growth rate in 2021 La Niña</atitle><jtitle>Science advances</jtitle><date>2024-06-07</date><risdate>2024</risdate><volume>10</volume><issue>23</issue><spage>eadl2201</spage><pages>eadl2201-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change.La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2 growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2 fluxes constrained by CO2 observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 concentration under climate change.</abstract><pub>American Association for the Advancement of Science</pub><pmid>38848371</pmid><doi>10.1126/sciadv.adl2201</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-06, Vol.10 (23), p.eadl2201 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11160468 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Climatology Earth, Environmental, Ecological, and Space Sciences Environmental Studies SciAdv r-articles |
title | The reduced net carbon uptake over Northern Hemisphere land causes the close-to-normal CO2 growth rate in 2021 La Niña |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20reduced%20net%20carbon%20uptake%20over%20Northern%20Hemisphere%20land%20causes%20the%20close-to-normal%20CO2%20growth%20rate%20in%202021%20La%20Ni%C3%B1a&rft.jtitle=Science%20advances&rft.au=Liu,%20Junjie&rft.date=2024-06-07&rft.volume=10&rft.issue=23&rft.spage=eadl2201&rft.pages=eadl2201-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adl2201&rft_dat=%3Cproquest_pubme%3E3065978607%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065978607&rft_id=info:pmid/38848371&rfr_iscdi=true |