Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins

Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2008-05, Vol.99 (5), p.973-978
Hauptverfasser: Takahashi, Akihisa, Yamakawa, Nobuhiro, Mori, Eiichiro, Ohnishi, Ken, Yokota, Shin‐ichi, Sugo, Noriyuki, Aratani, Yasuaki, Koyama, Hideki, Ohnishi, Takeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 5
container_start_page 973
container_title Cancer science
container_volume 99
creator Takahashi, Akihisa
Yamakawa, Nobuhiro
Mori, Eiichiro
Ohnishi, Ken
Yokota, Shin‐ichi
Sugo, Noriyuki
Aratani, Yasuaki
Koyama, Hideki
Ohnishi, Takeo
description Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat‐labile repair proteins such as DNA polymerase‐β (Polβ). Here the authors show that thermotolerance was partially suppressed in Polβ−/– mouse embryonic fibroblasts (MEF) when compared to the wild‐type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat‐induced γH2AX was suppressed in the thermotolerant cells. These results suggest that Polβ at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat‐induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat‐labile proteins besides Polβ. The present novel findings provide strong evidence that Polβ functions as a critical element involved in thermotolerance and exerts an important role in heat‐induced DSB. (Cancer Sci 2008; 99: 973–978)
doi_str_mv 10.1111/j.1349-7006.2008.00759.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11159698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19703622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5369-d491cc074ec917237660f4db82d5179240a53ef7ee43554e53c7a5eea6907cfe3</originalsourceid><addsrcrecordid>eNqNkUuO1DAQhiMEYoaBKyBvYNeh_IpjCQmNmqc0EgtgbbmdCu0miTN2emZ6xxE4CwfhEJwEZ7rVwAosWS5VfVWuqr8oCIWS5vNsU1Iu9EIBVCUDqEsAJXV5c6c4PQbu3tpqoYGzk-JBShsAXgkt7hcntOY1KA2nhXuJV9iFscdhIqEl0xpjH6bQYbSDQxLxcusjJuKHKbvc5MNAVjhdIw5kDN2uz96EP79--_Gd2KEha7QTSevgvpAxhgn9kB4W91rbJXx0eM-KT69ffVy-XVy8f_NueX6xcJJXetEITZ0DJdBpqhhXVQWtaFY1ayRVmgmwkmOrEAWXUqDkTlmJaCsNyrXIz4oX-7rjdtVj4_JI0XZmjL63cWeC9ebvyODX5nO4MnmlUle6zhWeHirEcLnFNJneJ4ddZwcM22QUCCny_SdItcrLZiyD9R50MaQUsT22Q2H-l5qNmSUzs2Rm1tLcamlucurjP8f5nXgQLwNPDoBNznbtrJhPR44Bq1ktVOae77lr3-Huvxswy_MP2eC_AJH2vpE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19703622</pqid></control><display><type>article</type><title>Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins</title><source>Wiley Online Library Open Access</source><creator>Takahashi, Akihisa ; Yamakawa, Nobuhiro ; Mori, Eiichiro ; Ohnishi, Ken ; Yokota, Shin‐ichi ; Sugo, Noriyuki ; Aratani, Yasuaki ; Koyama, Hideki ; Ohnishi, Takeo</creator><creatorcontrib>Takahashi, Akihisa ; Yamakawa, Nobuhiro ; Mori, Eiichiro ; Ohnishi, Ken ; Yokota, Shin‐ichi ; Sugo, Noriyuki ; Aratani, Yasuaki ; Koyama, Hideki ; Ohnishi, Takeo</creatorcontrib><description>Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat‐labile repair proteins such as DNA polymerase‐β (Polβ). Here the authors show that thermotolerance was partially suppressed in Polβ−/– mouse embryonic fibroblasts (MEF) when compared to the wild‐type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat‐induced γH2AX was suppressed in the thermotolerant cells. These results suggest that Polβ at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat‐induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat‐labile proteins besides Polβ. The present novel findings provide strong evidence that Polβ functions as a critical element involved in thermotolerance and exerts an important role in heat‐induced DSB. (Cancer Sci 2008; 99: 973–978)</description><identifier>ISSN: 1347-9032</identifier><identifier>ISSN: 1349-7006</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/j.1349-7006.2008.00759.x</identifier><identifier>PMID: 18380790</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>Animals ; Benzhydryl Compounds - pharmacology ; Biological and medical sciences ; Carcinoma, Non-Small-Cell Lung - metabolism ; Cell Line, Tumor ; DNA Breaks, Double-Stranded ; DNA Polymerase beta - metabolism ; Fever - metabolism ; Fibroblasts - metabolism ; Flow Cytometry ; Heat-Shock Proteins - metabolism ; Hot Temperature ; Humans ; Lung Neoplasms - metabolism ; Medical sciences ; Mice ; Models, Biological ; Original /Report ; Pyrrolidinones - pharmacology ; Tumors</subject><ispartof>Cancer science, 2008-05, Vol.99 (5), p.973-978</ispartof><rights>2008 Japanese Cancer Association</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5369-d491cc074ec917237660f4db82d5179240a53ef7ee43554e53c7a5eea6907cfe3</citedby><cites>FETCH-LOGICAL-c5369-d491cc074ec917237660f4db82d5179240a53ef7ee43554e53c7a5eea6907cfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159698/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159698/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1349-7006.2008.00759.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20282847$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18380790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takahashi, Akihisa</creatorcontrib><creatorcontrib>Yamakawa, Nobuhiro</creatorcontrib><creatorcontrib>Mori, Eiichiro</creatorcontrib><creatorcontrib>Ohnishi, Ken</creatorcontrib><creatorcontrib>Yokota, Shin‐ichi</creatorcontrib><creatorcontrib>Sugo, Noriyuki</creatorcontrib><creatorcontrib>Aratani, Yasuaki</creatorcontrib><creatorcontrib>Koyama, Hideki</creatorcontrib><creatorcontrib>Ohnishi, Takeo</creatorcontrib><title>Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat‐labile repair proteins such as DNA polymerase‐β (Polβ). Here the authors show that thermotolerance was partially suppressed in Polβ−/– mouse embryonic fibroblasts (MEF) when compared to the wild‐type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat‐induced γH2AX was suppressed in the thermotolerant cells. These results suggest that Polβ at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat‐induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat‐labile proteins besides Polβ. The present novel findings provide strong evidence that Polβ functions as a critical element involved in thermotolerance and exerts an important role in heat‐induced DSB. (Cancer Sci 2008; 99: 973–978)</description><subject>Animals</subject><subject>Benzhydryl Compounds - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Cell Line, Tumor</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Polymerase beta - metabolism</subject><subject>Fever - metabolism</subject><subject>Fibroblasts - metabolism</subject><subject>Flow Cytometry</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Lung Neoplasms - metabolism</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Original /Report</subject><subject>Pyrrolidinones - pharmacology</subject><subject>Tumors</subject><issn>1347-9032</issn><issn>1349-7006</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuO1DAQhiMEYoaBKyBvYNeh_IpjCQmNmqc0EgtgbbmdCu0miTN2emZ6xxE4CwfhEJwEZ7rVwAosWS5VfVWuqr8oCIWS5vNsU1Iu9EIBVCUDqEsAJXV5c6c4PQbu3tpqoYGzk-JBShsAXgkt7hcntOY1KA2nhXuJV9iFscdhIqEl0xpjH6bQYbSDQxLxcusjJuKHKbvc5MNAVjhdIw5kDN2uz96EP79--_Gd2KEha7QTSevgvpAxhgn9kB4W91rbJXx0eM-KT69ffVy-XVy8f_NueX6xcJJXetEITZ0DJdBpqhhXVQWtaFY1ayRVmgmwkmOrEAWXUqDkTlmJaCsNyrXIz4oX-7rjdtVj4_JI0XZmjL63cWeC9ebvyODX5nO4MnmlUle6zhWeHirEcLnFNJneJ4ddZwcM22QUCCny_SdItcrLZiyD9R50MaQUsT22Q2H-l5qNmSUzs2Rm1tLcamlucurjP8f5nXgQLwNPDoBNznbtrJhPR44Bq1ktVOae77lr3-Huvxswy_MP2eC_AJH2vpE</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Takahashi, Akihisa</creator><creator>Yamakawa, Nobuhiro</creator><creator>Mori, Eiichiro</creator><creator>Ohnishi, Ken</creator><creator>Yokota, Shin‐ichi</creator><creator>Sugo, Noriyuki</creator><creator>Aratani, Yasuaki</creator><creator>Koyama, Hideki</creator><creator>Ohnishi, Takeo</creator><general>Blackwell Publishing Asia</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200805</creationdate><title>Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins</title><author>Takahashi, Akihisa ; Yamakawa, Nobuhiro ; Mori, Eiichiro ; Ohnishi, Ken ; Yokota, Shin‐ichi ; Sugo, Noriyuki ; Aratani, Yasuaki ; Koyama, Hideki ; Ohnishi, Takeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5369-d491cc074ec917237660f4db82d5179240a53ef7ee43554e53c7a5eea6907cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Benzhydryl Compounds - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Cell Line, Tumor</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Polymerase beta - metabolism</topic><topic>Fever - metabolism</topic><topic>Fibroblasts - metabolism</topic><topic>Flow Cytometry</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Lung Neoplasms - metabolism</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Original /Report</topic><topic>Pyrrolidinones - pharmacology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Akihisa</creatorcontrib><creatorcontrib>Yamakawa, Nobuhiro</creatorcontrib><creatorcontrib>Mori, Eiichiro</creatorcontrib><creatorcontrib>Ohnishi, Ken</creatorcontrib><creatorcontrib>Yokota, Shin‐ichi</creatorcontrib><creatorcontrib>Sugo, Noriyuki</creatorcontrib><creatorcontrib>Aratani, Yasuaki</creatorcontrib><creatorcontrib>Koyama, Hideki</creatorcontrib><creatorcontrib>Ohnishi, Takeo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, Akihisa</au><au>Yamakawa, Nobuhiro</au><au>Mori, Eiichiro</au><au>Ohnishi, Ken</au><au>Yokota, Shin‐ichi</au><au>Sugo, Noriyuki</au><au>Aratani, Yasuaki</au><au>Koyama, Hideki</au><au>Ohnishi, Takeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2008-05</date><risdate>2008</risdate><volume>99</volume><issue>5</issue><spage>973</spage><epage>978</epage><pages>973-978</pages><issn>1347-9032</issn><issn>1349-7006</issn><eissn>1349-7006</eissn><abstract>Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat‐labile repair proteins such as DNA polymerase‐β (Polβ). Here the authors show that thermotolerance was partially suppressed in Polβ−/– mouse embryonic fibroblasts (MEF) when compared to the wild‐type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat‐induced γH2AX was suppressed in the thermotolerant cells. These results suggest that Polβ at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat‐induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat‐labile proteins besides Polβ. The present novel findings provide strong evidence that Polβ functions as a critical element involved in thermotolerance and exerts an important role in heat‐induced DSB. (Cancer Sci 2008; 99: 973–978)</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><pmid>18380790</pmid><doi>10.1111/j.1349-7006.2008.00759.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1347-9032
ispartof Cancer science, 2008-05, Vol.99 (5), p.973-978
issn 1347-9032
1349-7006
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11159698
source Wiley Online Library Open Access
subjects Animals
Benzhydryl Compounds - pharmacology
Biological and medical sciences
Carcinoma, Non-Small-Cell Lung - metabolism
Cell Line, Tumor
DNA Breaks, Double-Stranded
DNA Polymerase beta - metabolism
Fever - metabolism
Fibroblasts - metabolism
Flow Cytometry
Heat-Shock Proteins - metabolism
Hot Temperature
Humans
Lung Neoplasms - metabolism
Medical sciences
Mice
Models, Biological
Original /Report
Pyrrolidinones - pharmacology
Tumors
title Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20thermotolerance%20requires%20interaction%20between%20polymerase%E2%80%90%CE%B2%20and%20heat%20shock%20proteins&rft.jtitle=Cancer%20science&rft.au=Takahashi,%20Akihisa&rft.date=2008-05&rft.volume=99&rft.issue=5&rft.spage=973&rft.epage=978&rft.pages=973-978&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/j.1349-7006.2008.00759.x&rft_dat=%3Cproquest_24P%3E19703622%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19703622&rft_id=info:pmid/18380790&rfr_iscdi=true