Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins
Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppressio...
Gespeichert in:
Veröffentlicht in: | Cancer science 2008-05, Vol.99 (5), p.973-978 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 978 |
---|---|
container_issue | 5 |
container_start_page | 973 |
container_title | Cancer science |
container_volume | 99 |
creator | Takahashi, Akihisa Yamakawa, Nobuhiro Mori, Eiichiro Ohnishi, Ken Yokota, Shin‐ichi Sugo, Noriyuki Aratani, Yasuaki Koyama, Hideki Ohnishi, Takeo |
description | Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat‐labile repair proteins such as DNA polymerase‐β (Polβ). Here the authors show that thermotolerance was partially suppressed in Polβ−/– mouse embryonic fibroblasts (MEF) when compared to the wild‐type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat‐induced γH2AX was suppressed in the thermotolerant cells. These results suggest that Polβ at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat‐induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat‐labile proteins besides Polβ. The present novel findings provide strong evidence that Polβ functions as a critical element involved in thermotolerance and exerts an important role in heat‐induced DSB. (Cancer Sci 2008; 99: 973–978) |
doi_str_mv | 10.1111/j.1349-7006.2008.00759.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11159698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19703622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5369-d491cc074ec917237660f4db82d5179240a53ef7ee43554e53c7a5eea6907cfe3</originalsourceid><addsrcrecordid>eNqNkUuO1DAQhiMEYoaBKyBvYNeh_IpjCQmNmqc0EgtgbbmdCu0miTN2emZ6xxE4CwfhEJwEZ7rVwAosWS5VfVWuqr8oCIWS5vNsU1Iu9EIBVCUDqEsAJXV5c6c4PQbu3tpqoYGzk-JBShsAXgkt7hcntOY1KA2nhXuJV9iFscdhIqEl0xpjH6bQYbSDQxLxcusjJuKHKbvc5MNAVjhdIw5kDN2uz96EP79--_Gd2KEha7QTSevgvpAxhgn9kB4W91rbJXx0eM-KT69ffVy-XVy8f_NueX6xcJJXetEITZ0DJdBpqhhXVQWtaFY1ayRVmgmwkmOrEAWXUqDkTlmJaCsNyrXIz4oX-7rjdtVj4_JI0XZmjL63cWeC9ebvyODX5nO4MnmlUle6zhWeHirEcLnFNJneJ4ddZwcM22QUCCny_SdItcrLZiyD9R50MaQUsT22Q2H-l5qNmSUzs2Rm1tLcamlucurjP8f5nXgQLwNPDoBNznbtrJhPR44Bq1ktVOae77lr3-Huvxswy_MP2eC_AJH2vpE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19703622</pqid></control><display><type>article</type><title>Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins</title><source>Wiley Online Library Open Access</source><creator>Takahashi, Akihisa ; Yamakawa, Nobuhiro ; Mori, Eiichiro ; Ohnishi, Ken ; Yokota, Shin‐ichi ; Sugo, Noriyuki ; Aratani, Yasuaki ; Koyama, Hideki ; Ohnishi, Takeo</creator><creatorcontrib>Takahashi, Akihisa ; Yamakawa, Nobuhiro ; Mori, Eiichiro ; Ohnishi, Ken ; Yokota, Shin‐ichi ; Sugo, Noriyuki ; Aratani, Yasuaki ; Koyama, Hideki ; Ohnishi, Takeo</creatorcontrib><description>Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat‐labile repair proteins such as DNA polymerase‐β (Polβ). Here the authors show that thermotolerance was partially suppressed in Polβ−/– mouse embryonic fibroblasts (MEF) when compared to the wild‐type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat‐induced γH2AX was suppressed in the thermotolerant cells. These results suggest that Polβ at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat‐induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat‐labile proteins besides Polβ. The present novel findings provide strong evidence that Polβ functions as a critical element involved in thermotolerance and exerts an important role in heat‐induced DSB. (Cancer Sci 2008; 99: 973–978)</description><identifier>ISSN: 1347-9032</identifier><identifier>ISSN: 1349-7006</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/j.1349-7006.2008.00759.x</identifier><identifier>PMID: 18380790</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>Animals ; Benzhydryl Compounds - pharmacology ; Biological and medical sciences ; Carcinoma, Non-Small-Cell Lung - metabolism ; Cell Line, Tumor ; DNA Breaks, Double-Stranded ; DNA Polymerase beta - metabolism ; Fever - metabolism ; Fibroblasts - metabolism ; Flow Cytometry ; Heat-Shock Proteins - metabolism ; Hot Temperature ; Humans ; Lung Neoplasms - metabolism ; Medical sciences ; Mice ; Models, Biological ; Original /Report ; Pyrrolidinones - pharmacology ; Tumors</subject><ispartof>Cancer science, 2008-05, Vol.99 (5), p.973-978</ispartof><rights>2008 Japanese Cancer Association</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5369-d491cc074ec917237660f4db82d5179240a53ef7ee43554e53c7a5eea6907cfe3</citedby><cites>FETCH-LOGICAL-c5369-d491cc074ec917237660f4db82d5179240a53ef7ee43554e53c7a5eea6907cfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159698/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159698/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1349-7006.2008.00759.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20282847$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18380790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takahashi, Akihisa</creatorcontrib><creatorcontrib>Yamakawa, Nobuhiro</creatorcontrib><creatorcontrib>Mori, Eiichiro</creatorcontrib><creatorcontrib>Ohnishi, Ken</creatorcontrib><creatorcontrib>Yokota, Shin‐ichi</creatorcontrib><creatorcontrib>Sugo, Noriyuki</creatorcontrib><creatorcontrib>Aratani, Yasuaki</creatorcontrib><creatorcontrib>Koyama, Hideki</creatorcontrib><creatorcontrib>Ohnishi, Takeo</creatorcontrib><title>Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat‐labile repair proteins such as DNA polymerase‐β (Polβ). Here the authors show that thermotolerance was partially suppressed in Polβ−/– mouse embryonic fibroblasts (MEF) when compared to the wild‐type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat‐induced γH2AX was suppressed in the thermotolerant cells. These results suggest that Polβ at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat‐induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat‐labile proteins besides Polβ. The present novel findings provide strong evidence that Polβ functions as a critical element involved in thermotolerance and exerts an important role in heat‐induced DSB. (Cancer Sci 2008; 99: 973–978)</description><subject>Animals</subject><subject>Benzhydryl Compounds - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Cell Line, Tumor</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Polymerase beta - metabolism</subject><subject>Fever - metabolism</subject><subject>Fibroblasts - metabolism</subject><subject>Flow Cytometry</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Lung Neoplasms - metabolism</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Original /Report</subject><subject>Pyrrolidinones - pharmacology</subject><subject>Tumors</subject><issn>1347-9032</issn><issn>1349-7006</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuO1DAQhiMEYoaBKyBvYNeh_IpjCQmNmqc0EgtgbbmdCu0miTN2emZ6xxE4CwfhEJwEZ7rVwAosWS5VfVWuqr8oCIWS5vNsU1Iu9EIBVCUDqEsAJXV5c6c4PQbu3tpqoYGzk-JBShsAXgkt7hcntOY1KA2nhXuJV9iFscdhIqEl0xpjH6bQYbSDQxLxcusjJuKHKbvc5MNAVjhdIw5kDN2uz96EP79--_Gd2KEha7QTSevgvpAxhgn9kB4W91rbJXx0eM-KT69ffVy-XVy8f_NueX6xcJJXetEITZ0DJdBpqhhXVQWtaFY1ayRVmgmwkmOrEAWXUqDkTlmJaCsNyrXIz4oX-7rjdtVj4_JI0XZmjL63cWeC9ebvyODX5nO4MnmlUle6zhWeHirEcLnFNJneJ4ddZwcM22QUCCny_SdItcrLZiyD9R50MaQUsT22Q2H-l5qNmSUzs2Rm1tLcamlucurjP8f5nXgQLwNPDoBNznbtrJhPR44Bq1ktVOae77lr3-Huvxswy_MP2eC_AJH2vpE</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Takahashi, Akihisa</creator><creator>Yamakawa, Nobuhiro</creator><creator>Mori, Eiichiro</creator><creator>Ohnishi, Ken</creator><creator>Yokota, Shin‐ichi</creator><creator>Sugo, Noriyuki</creator><creator>Aratani, Yasuaki</creator><creator>Koyama, Hideki</creator><creator>Ohnishi, Takeo</creator><general>Blackwell Publishing Asia</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200805</creationdate><title>Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins</title><author>Takahashi, Akihisa ; Yamakawa, Nobuhiro ; Mori, Eiichiro ; Ohnishi, Ken ; Yokota, Shin‐ichi ; Sugo, Noriyuki ; Aratani, Yasuaki ; Koyama, Hideki ; Ohnishi, Takeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5369-d491cc074ec917237660f4db82d5179240a53ef7ee43554e53c7a5eea6907cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Benzhydryl Compounds - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Cell Line, Tumor</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Polymerase beta - metabolism</topic><topic>Fever - metabolism</topic><topic>Fibroblasts - metabolism</topic><topic>Flow Cytometry</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Lung Neoplasms - metabolism</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Original /Report</topic><topic>Pyrrolidinones - pharmacology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Akihisa</creatorcontrib><creatorcontrib>Yamakawa, Nobuhiro</creatorcontrib><creatorcontrib>Mori, Eiichiro</creatorcontrib><creatorcontrib>Ohnishi, Ken</creatorcontrib><creatorcontrib>Yokota, Shin‐ichi</creatorcontrib><creatorcontrib>Sugo, Noriyuki</creatorcontrib><creatorcontrib>Aratani, Yasuaki</creatorcontrib><creatorcontrib>Koyama, Hideki</creatorcontrib><creatorcontrib>Ohnishi, Takeo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, Akihisa</au><au>Yamakawa, Nobuhiro</au><au>Mori, Eiichiro</au><au>Ohnishi, Ken</au><au>Yokota, Shin‐ichi</au><au>Sugo, Noriyuki</au><au>Aratani, Yasuaki</au><au>Koyama, Hideki</au><au>Ohnishi, Takeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2008-05</date><risdate>2008</risdate><volume>99</volume><issue>5</issue><spage>973</spage><epage>978</epage><pages>973-978</pages><issn>1347-9032</issn><issn>1349-7006</issn><eissn>1349-7006</eissn><abstract>Although heat shock proteins (HSP) are well known to contribute to thermotolerance, they only play a supporting role in the phenomenon. Recently, it has been reported that heat sensitivity depends on heat‐induced DNA double‐strand breaks (DSB), and that thermotolerance also depends on the suppression of DSB formation. However the critical elements involved in thermotolerance have not yet been fully identified. Heat produces DSB and leads to cell death through denaturation and dysfunction of heat‐labile repair proteins such as DNA polymerase‐β (Polβ). Here the authors show that thermotolerance was partially suppressed in Polβ−/– mouse embryonic fibroblasts (MEF) when compared to the wild‐type MEF, and was also suppressed in the presence of the HSP inhibitor, KNK437, in both cell lines. Moreover, the authors found that heat‐induced γH2AX was suppressed in the thermotolerant cells. These results suggest that Polβ at least contributes to thermotolerance through its reactivation and stimulation by Hsp27 and Hsp70. In addition, it appears possible that fewer DSB were formed after a challenging heat exposure because preheat‐induced Hsp27 and Hsp70 can rescue or restore other, as yet unidentified, heat‐labile proteins besides Polβ. The present novel findings provide strong evidence that Polβ functions as a critical element involved in thermotolerance and exerts an important role in heat‐induced DSB. (Cancer Sci 2008; 99: 973–978)</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><pmid>18380790</pmid><doi>10.1111/j.1349-7006.2008.00759.x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2008-05, Vol.99 (5), p.973-978 |
issn | 1347-9032 1349-7006 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11159698 |
source | Wiley Online Library Open Access |
subjects | Animals Benzhydryl Compounds - pharmacology Biological and medical sciences Carcinoma, Non-Small-Cell Lung - metabolism Cell Line, Tumor DNA Breaks, Double-Stranded DNA Polymerase beta - metabolism Fever - metabolism Fibroblasts - metabolism Flow Cytometry Heat-Shock Proteins - metabolism Hot Temperature Humans Lung Neoplasms - metabolism Medical sciences Mice Models, Biological Original /Report Pyrrolidinones - pharmacology Tumors |
title | Development of thermotolerance requires interaction between polymerase‐β and heat shock proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20thermotolerance%20requires%20interaction%20between%20polymerase%E2%80%90%CE%B2%20and%20heat%20shock%20proteins&rft.jtitle=Cancer%20science&rft.au=Takahashi,%20Akihisa&rft.date=2008-05&rft.volume=99&rft.issue=5&rft.spage=973&rft.epage=978&rft.pages=973-978&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/j.1349-7006.2008.00759.x&rft_dat=%3Cproquest_24P%3E19703622%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19703622&rft_id=info:pmid/18380790&rfr_iscdi=true |