Identification of differentially expressed molecules in adult T‐cell leukemia cells proliferating in vivo
HTLV‐I is the causative agent of adult T‐cell leukemia (ATL). However, the precise mechanism underlying the neoplastic cell growth of ATL remains unclear. In this study, we established a leukemic cell line, termed SYK‐11L(+), from tumor cells (S‐YU) in an in vivo cell proliferation model of ATL usin...
Gespeichert in:
Veröffentlicht in: | Cancer science 2004-05, Vol.95 (5), p.411-417 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 5 |
container_start_page | 411 |
container_title | Cancer science |
container_volume | 95 |
creator | Koga, Hikari Imada, Kazunori Ueda, Maki Hishizawa, Masakatsu Uchiyama, Takashi |
description | HTLV‐I is the causative agent of adult T‐cell leukemia (ATL). However, the precise mechanism underlying the neoplastic cell growth of ATL remains unclear. In this study, we established a leukemic cell line, termed SYK‐11L(+), from tumor cells (S‐YU) in an in vivo cell proliferation model of ATL using severe combined immunodeficiency (SCID) mice. Unexpectedly, SYK‐11L(+) was found to have no tumorigenicity in SCID mice. Flow cytometric analysis showed that S‐YU expressed cell adhesion molecules including CD44, ICAM‐1 and OX40, whereas SYK‐11L(+) had lost the expression of these molecules. The administration of anti‐OX40 monoclonal antibody inhibited the engraftment of S‐YU cells into SCID mice, suggesting that OX40 is a potential target for immunotherapy. Significant differences in responsiveness to IL‐2 and IL‐15 were observed between the two cell types. To better understand the molecular basis of tumorigenicity, cDNA microarray analysis was performed using tumorigenic S‐YU and non‐tumori‐genic SYK‐11L(+) cells. We obtained several candidate genes differentially overexpressed in S‐YU compared with SYK‐11L(+). Interestingly, one such gene, regulator of G protein signaling 1 (RGS1), was shown to be overexpressed in most ATL patients. Further characterization of the differentially expressed molecules, such as OX40 and RGS1, would provide useful information not only to elucidate the mechanism of ATL cell growth in vivo, but also to develop novel molecularly targeted therapies. |
doi_str_mv | 10.1111/j.1349-7006.2004.tb03224.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11159125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400047839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5211-aa17694c0a1b7f00ab1e277d4d1706b3c1173013d8a3995f0057ecc8c4952b883</originalsourceid><addsrcrecordid>eNqVkctu1DAUhiMEohd4BWSBYJfgEztxzKKoGnGpVIkFZW05jlM8deLBToaZXR-BZ-RJsJmoFHZ448v5zu9zzp9lzwEXENfrdQGE8pxhXBclxrSYWkzKkha7B9nxXejh7zPLeYwdZSchrDEmNeX0cXYEFZCS1c1xdnPR6XEyvVFyMm5Erked6Xvt06u0do_0buN1CLpDg7NazVYHZEYku9lO6Orn7Q-lrUVWzzd6MBKlW0Ab76yJKlF0vE741mzdk-xRL23QT5f9NPvy_t3V6mN--enDxer8MldVCZBLCazmVGEJLesxli3okrGOdsBw3RIFwAgG0jWScF5FomJaqUZRXpVt05DT7O1BdzO3g-5UbMVLKzbeDNLvhZNG_B0ZzVdx7bYiDrfiUFZR4dWi4N23WYdJDCakzuSo3RwEA44bXvEIvvgHXLvZj7E7UVIcvWENSdSbA6W8C8Hr_q4WwOlTEGuRfBPJN5EsFYulYheTn93v5k_q4mEEXi6ADEra3stRmXCPY3FsFYnc2YH7bqze_0cJYnX-mQKQX7hYwHc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400047839</pqid></control><display><type>article</type><title>Identification of differentially expressed molecules in adult T‐cell leukemia cells proliferating in vivo</title><source>Wiley Online Library Open Access</source><creator>Koga, Hikari ; Imada, Kazunori ; Ueda, Maki ; Hishizawa, Masakatsu ; Uchiyama, Takashi</creator><creatorcontrib>Koga, Hikari ; Imada, Kazunori ; Ueda, Maki ; Hishizawa, Masakatsu ; Uchiyama, Takashi</creatorcontrib><description>HTLV‐I is the causative agent of adult T‐cell leukemia (ATL). However, the precise mechanism underlying the neoplastic cell growth of ATL remains unclear. In this study, we established a leukemic cell line, termed SYK‐11L(+), from tumor cells (S‐YU) in an in vivo cell proliferation model of ATL using severe combined immunodeficiency (SCID) mice. Unexpectedly, SYK‐11L(+) was found to have no tumorigenicity in SCID mice. Flow cytometric analysis showed that S‐YU expressed cell adhesion molecules including CD44, ICAM‐1 and OX40, whereas SYK‐11L(+) had lost the expression of these molecules. The administration of anti‐OX40 monoclonal antibody inhibited the engraftment of S‐YU cells into SCID mice, suggesting that OX40 is a potential target for immunotherapy. Significant differences in responsiveness to IL‐2 and IL‐15 were observed between the two cell types. To better understand the molecular basis of tumorigenicity, cDNA microarray analysis was performed using tumorigenic S‐YU and non‐tumori‐genic SYK‐11L(+) cells. We obtained several candidate genes differentially overexpressed in S‐YU compared with SYK‐11L(+). Interestingly, one such gene, regulator of G protein signaling 1 (RGS1), was shown to be overexpressed in most ATL patients. Further characterization of the differentially expressed molecules, such as OX40 and RGS1, would provide useful information not only to elucidate the mechanism of ATL cell growth in vivo, but also to develop novel molecularly targeted therapies.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/j.1349-7006.2004.tb03224.x</identifier><identifier>PMID: 15132768</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Biological and medical sciences ; CD44 antigen ; Cell adhesion & migration ; Cell adhesion molecules ; Cell Adhesion Molecules - biosynthesis ; Cell Adhesion Molecules - genetics ; Cell growth ; Cell proliferation ; Cell Transformation, Neoplastic ; DNA microarrays ; Flow Cytometry ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Hematologic and hematopoietic diseases ; Human T-lymphotropic virus 1 - pathogenicity ; Humans ; Immunotherapy ; Leukemia ; Leukemia-Lymphoma, Adult T-Cell - physiopathology ; Leukemia-Lymphoma, Adult T-Cell - virology ; Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis ; Medical sciences ; Mice ; Mice, SCID ; Monoclonal antibodies ; Oligonucleotide Array Sequence Analysis ; Reverse Transcriptase Polymerase Chain Reaction ; RGS Proteins - biosynthesis ; Signal Transduction ; Syk protein ; Tumor cells ; Tumor Cells, Cultured ; Tumor necrosis factor ; Tumorigenicity</subject><ispartof>Cancer science, 2004-05, Vol.95 (5), p.411-417</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright John Wiley & Sons, Inc. May 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5211-aa17694c0a1b7f00ab1e277d4d1706b3c1173013d8a3995f0057ecc8c4952b883</citedby><cites>FETCH-LOGICAL-c5211-aa17694c0a1b7f00ab1e277d4d1706b3c1173013d8a3995f0057ecc8c4952b883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159125/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159125/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11542,27903,27904,45553,45554,46031,46455,53770,53772</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1349-7006.2004.tb03224.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15770653$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15132768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koga, Hikari</creatorcontrib><creatorcontrib>Imada, Kazunori</creatorcontrib><creatorcontrib>Ueda, Maki</creatorcontrib><creatorcontrib>Hishizawa, Masakatsu</creatorcontrib><creatorcontrib>Uchiyama, Takashi</creatorcontrib><title>Identification of differentially expressed molecules in adult T‐cell leukemia cells proliferating in vivo</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>HTLV‐I is the causative agent of adult T‐cell leukemia (ATL). However, the precise mechanism underlying the neoplastic cell growth of ATL remains unclear. In this study, we established a leukemic cell line, termed SYK‐11L(+), from tumor cells (S‐YU) in an in vivo cell proliferation model of ATL using severe combined immunodeficiency (SCID) mice. Unexpectedly, SYK‐11L(+) was found to have no tumorigenicity in SCID mice. Flow cytometric analysis showed that S‐YU expressed cell adhesion molecules including CD44, ICAM‐1 and OX40, whereas SYK‐11L(+) had lost the expression of these molecules. The administration of anti‐OX40 monoclonal antibody inhibited the engraftment of S‐YU cells into SCID mice, suggesting that OX40 is a potential target for immunotherapy. Significant differences in responsiveness to IL‐2 and IL‐15 were observed between the two cell types. To better understand the molecular basis of tumorigenicity, cDNA microarray analysis was performed using tumorigenic S‐YU and non‐tumori‐genic SYK‐11L(+) cells. We obtained several candidate genes differentially overexpressed in S‐YU compared with SYK‐11L(+). Interestingly, one such gene, regulator of G protein signaling 1 (RGS1), was shown to be overexpressed in most ATL patients. Further characterization of the differentially expressed molecules, such as OX40 and RGS1, would provide useful information not only to elucidate the mechanism of ATL cell growth in vivo, but also to develop novel molecularly targeted therapies.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>CD44 antigen</subject><subject>Cell adhesion & migration</subject><subject>Cell adhesion molecules</subject><subject>Cell Adhesion Molecules - biosynthesis</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cell Transformation, Neoplastic</subject><subject>DNA microarrays</subject><subject>Flow Cytometry</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Human T-lymphotropic virus 1 - pathogenicity</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Leukemia</subject><subject>Leukemia-Lymphoma, Adult T-Cell - physiopathology</subject><subject>Leukemia-Lymphoma, Adult T-Cell - virology</subject><subject>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Monoclonal antibodies</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RGS Proteins - biosynthesis</subject><subject>Signal Transduction</subject><subject>Syk protein</subject><subject>Tumor cells</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor necrosis factor</subject><subject>Tumorigenicity</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkctu1DAUhiMEohd4BWSBYJfgEztxzKKoGnGpVIkFZW05jlM8deLBToaZXR-BZ-RJsJmoFHZ448v5zu9zzp9lzwEXENfrdQGE8pxhXBclxrSYWkzKkha7B9nxXejh7zPLeYwdZSchrDEmNeX0cXYEFZCS1c1xdnPR6XEyvVFyMm5Erked6Xvt06u0do_0buN1CLpDg7NazVYHZEYku9lO6Orn7Q-lrUVWzzd6MBKlW0Ab76yJKlF0vE741mzdk-xRL23QT5f9NPvy_t3V6mN--enDxer8MldVCZBLCazmVGEJLesxli3okrGOdsBw3RIFwAgG0jWScF5FomJaqUZRXpVt05DT7O1BdzO3g-5UbMVLKzbeDNLvhZNG_B0ZzVdx7bYiDrfiUFZR4dWi4N23WYdJDCakzuSo3RwEA44bXvEIvvgHXLvZj7E7UVIcvWENSdSbA6W8C8Hr_q4WwOlTEGuRfBPJN5EsFYulYheTn93v5k_q4mEEXi6ADEra3stRmXCPY3FsFYnc2YH7bqze_0cJYnX-mQKQX7hYwHc</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Koga, Hikari</creator><creator>Imada, Kazunori</creator><creator>Ueda, Maki</creator><creator>Hishizawa, Masakatsu</creator><creator>Uchiyama, Takashi</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>John Wiley & Sons, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200405</creationdate><title>Identification of differentially expressed molecules in adult T‐cell leukemia cells proliferating in vivo</title><author>Koga, Hikari ; Imada, Kazunori ; Ueda, Maki ; Hishizawa, Masakatsu ; Uchiyama, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5211-aa17694c0a1b7f00ab1e277d4d1706b3c1173013d8a3995f0057ecc8c4952b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>CD44 antigen</topic><topic>Cell adhesion & migration</topic><topic>Cell adhesion molecules</topic><topic>Cell Adhesion Molecules - biosynthesis</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cell Transformation, Neoplastic</topic><topic>DNA microarrays</topic><topic>Flow Cytometry</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Human T-lymphotropic virus 1 - pathogenicity</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Leukemia</topic><topic>Leukemia-Lymphoma, Adult T-Cell - physiopathology</topic><topic>Leukemia-Lymphoma, Adult T-Cell - virology</topic><topic>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Monoclonal antibodies</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RGS Proteins - biosynthesis</topic><topic>Signal Transduction</topic><topic>Syk protein</topic><topic>Tumor cells</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor necrosis factor</topic><topic>Tumorigenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koga, Hikari</creatorcontrib><creatorcontrib>Imada, Kazunori</creatorcontrib><creatorcontrib>Ueda, Maki</creatorcontrib><creatorcontrib>Hishizawa, Masakatsu</creatorcontrib><creatorcontrib>Uchiyama, Takashi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koga, Hikari</au><au>Imada, Kazunori</au><au>Ueda, Maki</au><au>Hishizawa, Masakatsu</au><au>Uchiyama, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of differentially expressed molecules in adult T‐cell leukemia cells proliferating in vivo</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2004-05</date><risdate>2004</risdate><volume>95</volume><issue>5</issue><spage>411</spage><epage>417</epage><pages>411-417</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>HTLV‐I is the causative agent of adult T‐cell leukemia (ATL). However, the precise mechanism underlying the neoplastic cell growth of ATL remains unclear. In this study, we established a leukemic cell line, termed SYK‐11L(+), from tumor cells (S‐YU) in an in vivo cell proliferation model of ATL using severe combined immunodeficiency (SCID) mice. Unexpectedly, SYK‐11L(+) was found to have no tumorigenicity in SCID mice. Flow cytometric analysis showed that S‐YU expressed cell adhesion molecules including CD44, ICAM‐1 and OX40, whereas SYK‐11L(+) had lost the expression of these molecules. The administration of anti‐OX40 monoclonal antibody inhibited the engraftment of S‐YU cells into SCID mice, suggesting that OX40 is a potential target for immunotherapy. Significant differences in responsiveness to IL‐2 and IL‐15 were observed between the two cell types. To better understand the molecular basis of tumorigenicity, cDNA microarray analysis was performed using tumorigenic S‐YU and non‐tumori‐genic SYK‐11L(+) cells. We obtained several candidate genes differentially overexpressed in S‐YU compared with SYK‐11L(+). Interestingly, one such gene, regulator of G protein signaling 1 (RGS1), was shown to be overexpressed in most ATL patients. Further characterization of the differentially expressed molecules, such as OX40 and RGS1, would provide useful information not only to elucidate the mechanism of ATL cell growth in vivo, but also to develop novel molecularly targeted therapies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15132768</pmid><doi>10.1111/j.1349-7006.2004.tb03224.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2004-05, Vol.95 (5), p.411-417 |
issn | 1347-9032 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11159125 |
source | Wiley Online Library Open Access |
subjects | Animals Biological and medical sciences CD44 antigen Cell adhesion & migration Cell adhesion molecules Cell Adhesion Molecules - biosynthesis Cell Adhesion Molecules - genetics Cell growth Cell proliferation Cell Transformation, Neoplastic DNA microarrays Flow Cytometry Gene Expression Profiling Gene Expression Regulation, Neoplastic Hematologic and hematopoietic diseases Human T-lymphotropic virus 1 - pathogenicity Humans Immunotherapy Leukemia Leukemia-Lymphoma, Adult T-Cell - physiopathology Leukemia-Lymphoma, Adult T-Cell - virology Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis Medical sciences Mice Mice, SCID Monoclonal antibodies Oligonucleotide Array Sequence Analysis Reverse Transcriptase Polymerase Chain Reaction RGS Proteins - biosynthesis Signal Transduction Syk protein Tumor cells Tumor Cells, Cultured Tumor necrosis factor Tumorigenicity |
title | Identification of differentially expressed molecules in adult T‐cell leukemia cells proliferating in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20differentially%20expressed%20molecules%20in%20adult%20T%E2%80%90cell%20leukemia%20cells%20proliferating%20in%20vivo&rft.jtitle=Cancer%20science&rft.au=Koga,%20Hikari&rft.date=2004-05&rft.volume=95&rft.issue=5&rft.spage=411&rft.epage=417&rft.pages=411-417&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/j.1349-7006.2004.tb03224.x&rft_dat=%3Cproquest_24P%3E2400047839%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400047839&rft_id=info:pmid/15132768&rfr_iscdi=true |