Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection
Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on...
Gespeichert in:
Veröffentlicht in: | Cancer science 2004-10, Vol.95 (10), p.798-802 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 10 |
container_start_page | 798 |
container_title | Cancer science |
container_volume | 95 |
creator | Matsubara, Satoshi Shibata, Hideyuki Takahashi, Mami Ishikawa, Fumiyasu Yokokura, Teruo Sugimura, Takashi Wakabayashi, Keiji |
description | Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on identifying the nu‐cleotide sequences of cDNAs encoding Mongolian gerbil inflammatory proteins, such as interleukin‐1 (IL‐lβ), tumor necrosis factor a (TNF‐α), cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS). Furthermore, we examined the mRNA expression of these genes in the glandular stomach by RT‐PCR at 1–8 weeks after H. pylori infection. The deduced amino acid homol‐ogies to mouse, rat and human proteins were 86.2%, 83.6% and 67.8% for IL‐1β, 87.2%, 85.1% and 78.4% for TNF‐α, 91.9%, 90.2% and 84.8% for COX‐2 and 90.8%, 89.1% and 80.1% for iNOS, respectively. The average stomach weight of Mongolian gerbils inoculated with H. pylori was increased in a time‐dependent manner at 1, 2, 4 and 8 weeks after inoculation. In the py‐loric region, mRNA expression levels of IL‐1β, TNF‐α and iNOS were increased in H. pylori‐infected animals at the 2 weeks time point, while in the fundic region, expression levels of IL‐1β, TNF‐α and iNOS were elevated at 4 and 8 weeks. The COX‐2 expression level in the fundic region was clearly elevated in infected animals compared with control animals at 4 and 8 weeks, but in the py‐loric region, expression levels were similar in both infected and control animals. Thus, our results indicate that oxidative stress occurs from an early stage of H. pylori infection in the glandular stomach of Mongolian gerbils. |
doi_str_mv | 10.1111/j.1349-7006.2004.tb02184.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11158252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67005587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4808-d12210d613cd0c21d3e5ce6d500372845d7834798dc4a9c16a0990a9e1ce9cd63</originalsourceid><addsrcrecordid>eNqVkd-O1CAUxhujcdfVVzBEo1e2AgVavNBMxj9rsuqFek0YoB0mFEZodeYFfG6p0-yqd3IDyfmdj_OdrygeIVihfJ7vKlQTXjYQsgpDSKpxAzFqSXW4VZxfl27_fjclhzU-K-6ltIOwZoSTu8UZohQSTNh58XPtgre-B6EDH4Lvg7PSg97EjXVAvf64SsB4FfSMWN85OQxyDPEI9jGMxvr0DEivwbg1NgJz2EeTkg0-s6B3uTI5GUEawyDVFugpzjqXFdgfXYh2VjRqzPz94k4nXTIPlvui-Pr2zZf1ZXn16d379eqqVKSFbakRxghqhmqlocJI14YqwzTN1hrcEqqbNnvmrVZEcoWYhJxDyQ1ShivN6ovi1Ul3P20Go5XxY5RO7KMdZDyKIK34u-LtVvThu8h7py2mOCs8XRRi-DaZNIrBJmVcNmvClATLu6e0bTL4-B9wF6boszuBa55PS2uUqRcnSsWQUjTd9SwIzp8isRNzpGKOVMxpiyVtccjND_90c9O6xJuBJwsgk5Kui9Irm244hjlrKM3cyxP3wzpz_I8RxHr1Oa-7_gXGG8k-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399998531</pqid></control><display><type>article</type><title>Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection</title><source>Wiley Online Library Open Access</source><creator>Matsubara, Satoshi ; Shibata, Hideyuki ; Takahashi, Mami ; Ishikawa, Fumiyasu ; Yokokura, Teruo ; Sugimura, Takashi ; Wakabayashi, Keiji</creator><creatorcontrib>Matsubara, Satoshi ; Shibata, Hideyuki ; Takahashi, Mami ; Ishikawa, Fumiyasu ; Yokokura, Teruo ; Sugimura, Takashi ; Wakabayashi, Keiji</creatorcontrib><description>Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on identifying the nu‐cleotide sequences of cDNAs encoding Mongolian gerbil inflammatory proteins, such as interleukin‐1 (IL‐lβ), tumor necrosis factor a (TNF‐α), cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS). Furthermore, we examined the mRNA expression of these genes in the glandular stomach by RT‐PCR at 1–8 weeks after H. pylori infection. The deduced amino acid homol‐ogies to mouse, rat and human proteins were 86.2%, 83.6% and 67.8% for IL‐1β, 87.2%, 85.1% and 78.4% for TNF‐α, 91.9%, 90.2% and 84.8% for COX‐2 and 90.8%, 89.1% and 80.1% for iNOS, respectively. The average stomach weight of Mongolian gerbils inoculated with H. pylori was increased in a time‐dependent manner at 1, 2, 4 and 8 weeks after inoculation. In the py‐loric region, mRNA expression levels of IL‐1β, TNF‐α and iNOS were increased in H. pylori‐infected animals at the 2 weeks time point, while in the fundic region, expression levels of IL‐1β, TNF‐α and iNOS were elevated at 4 and 8 weeks. The COX‐2 expression level in the fundic region was clearly elevated in infected animals compared with control animals at 4 and 8 weeks, but in the py‐loric region, expression levels were similar in both infected and control animals. Thus, our results indicate that oxidative stress occurs from an early stage of H. pylori infection in the glandular stomach of Mongolian gerbils.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/j.1349-7006.2004.tb02184.x</identifier><identifier>PMID: 15504246</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino acids ; Animal models ; Animals ; Biological and medical sciences ; Cloning ; Cloning, Molecular ; Cyclooxygenase 2 ; DNA, Complementary ; Gastric Mucosa - metabolism ; Gastritis - metabolism ; Gastritis - microbiology ; Gene expression ; Gerbillinae ; Helicobacter Infections - genetics ; Helicobacter Infections - metabolism ; Helicobacter Infections - microbiology ; Helicobacter pylori ; Helicobacter pylori - isolation & purification ; Infections ; Inflammation ; Inoculation ; Interleukin-1 - metabolism ; Interleukin-1beta ; Isoenzymes - metabolism ; Macrophage Inflammatory Proteins - metabolism ; Medical sciences ; Nitric oxide ; Nitric Oxide Synthase - metabolism ; Nitric Oxide Synthase Type II ; Nitric-oxide synthase ; Organ Size ; Oxidative stress ; Peptide Fragments - metabolism ; Prostaglandin endoperoxide synthase ; Prostaglandin-Endoperoxide Synthases - metabolism ; Proteins ; Rodents ; Stomach ; Stomach - pathology ; Tumor necrosis factor ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Tumors</subject><ispartof>Cancer science, 2004-10, Vol.95 (10), p.798-802</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright John Wiley & Sons, Inc. Oct 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4808-d12210d613cd0c21d3e5ce6d500372845d7834798dc4a9c16a0990a9e1ce9cd63</citedby><cites>FETCH-LOGICAL-c4808-d12210d613cd0c21d3e5ce6d500372845d7834798dc4a9c16a0990a9e1ce9cd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11158252/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11158252/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,11543,27905,27906,45555,45556,46033,46457,53772,53774</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1349-7006.2004.tb02184.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16296755$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15504246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsubara, Satoshi</creatorcontrib><creatorcontrib>Shibata, Hideyuki</creatorcontrib><creatorcontrib>Takahashi, Mami</creatorcontrib><creatorcontrib>Ishikawa, Fumiyasu</creatorcontrib><creatorcontrib>Yokokura, Teruo</creatorcontrib><creatorcontrib>Sugimura, Takashi</creatorcontrib><creatorcontrib>Wakabayashi, Keiji</creatorcontrib><title>Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on identifying the nu‐cleotide sequences of cDNAs encoding Mongolian gerbil inflammatory proteins, such as interleukin‐1 (IL‐lβ), tumor necrosis factor a (TNF‐α), cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS). Furthermore, we examined the mRNA expression of these genes in the glandular stomach by RT‐PCR at 1–8 weeks after H. pylori infection. The deduced amino acid homol‐ogies to mouse, rat and human proteins were 86.2%, 83.6% and 67.8% for IL‐1β, 87.2%, 85.1% and 78.4% for TNF‐α, 91.9%, 90.2% and 84.8% for COX‐2 and 90.8%, 89.1% and 80.1% for iNOS, respectively. The average stomach weight of Mongolian gerbils inoculated with H. pylori was increased in a time‐dependent manner at 1, 2, 4 and 8 weeks after inoculation. In the py‐loric region, mRNA expression levels of IL‐1β, TNF‐α and iNOS were increased in H. pylori‐infected animals at the 2 weeks time point, while in the fundic region, expression levels of IL‐1β, TNF‐α and iNOS were elevated at 4 and 8 weeks. The COX‐2 expression level in the fundic region was clearly elevated in infected animals compared with control animals at 4 and 8 weeks, but in the py‐loric region, expression levels were similar in both infected and control animals. Thus, our results indicate that oxidative stress occurs from an early stage of H. pylori infection in the glandular stomach of Mongolian gerbils.</description><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>Cyclooxygenase 2</subject><subject>DNA, Complementary</subject><subject>Gastric Mucosa - metabolism</subject><subject>Gastritis - metabolism</subject><subject>Gastritis - microbiology</subject><subject>Gene expression</subject><subject>Gerbillinae</subject><subject>Helicobacter Infections - genetics</subject><subject>Helicobacter Infections - metabolism</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - isolation & purification</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Inoculation</subject><subject>Interleukin-1 - metabolism</subject><subject>Interleukin-1beta</subject><subject>Isoenzymes - metabolism</subject><subject>Macrophage Inflammatory Proteins - metabolism</subject><subject>Medical sciences</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitric Oxide Synthase Type II</subject><subject>Nitric-oxide synthase</subject><subject>Organ Size</subject><subject>Oxidative stress</subject><subject>Peptide Fragments - metabolism</subject><subject>Prostaglandin endoperoxide synthase</subject><subject>Prostaglandin-Endoperoxide Synthases - metabolism</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Stomach</subject><subject>Stomach - pathology</subject><subject>Tumor necrosis factor</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkd-O1CAUxhujcdfVVzBEo1e2AgVavNBMxj9rsuqFek0YoB0mFEZodeYFfG6p0-yqd3IDyfmdj_OdrygeIVihfJ7vKlQTXjYQsgpDSKpxAzFqSXW4VZxfl27_fjclhzU-K-6ltIOwZoSTu8UZohQSTNh58XPtgre-B6EDH4Lvg7PSg97EjXVAvf64SsB4FfSMWN85OQxyDPEI9jGMxvr0DEivwbg1NgJz2EeTkg0-s6B3uTI5GUEawyDVFugpzjqXFdgfXYh2VjRqzPz94k4nXTIPlvui-Pr2zZf1ZXn16d379eqqVKSFbakRxghqhmqlocJI14YqwzTN1hrcEqqbNnvmrVZEcoWYhJxDyQ1ShivN6ovi1Ul3P20Go5XxY5RO7KMdZDyKIK34u-LtVvThu8h7py2mOCs8XRRi-DaZNIrBJmVcNmvClATLu6e0bTL4-B9wF6boszuBa55PS2uUqRcnSsWQUjTd9SwIzp8isRNzpGKOVMxpiyVtccjND_90c9O6xJuBJwsgk5Kui9Irm244hjlrKM3cyxP3wzpz_I8RxHr1Oa-7_gXGG8k-</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Matsubara, Satoshi</creator><creator>Shibata, Hideyuki</creator><creator>Takahashi, Mami</creator><creator>Ishikawa, Fumiyasu</creator><creator>Yokokura, Teruo</creator><creator>Sugimura, Takashi</creator><creator>Wakabayashi, Keiji</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>John Wiley & Sons, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200410</creationdate><title>Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection</title><author>Matsubara, Satoshi ; Shibata, Hideyuki ; Takahashi, Mami ; Ishikawa, Fumiyasu ; Yokokura, Teruo ; Sugimura, Takashi ; Wakabayashi, Keiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4808-d12210d613cd0c21d3e5ce6d500372845d7834798dc4a9c16a0990a9e1ce9cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>Cyclooxygenase 2</topic><topic>DNA, Complementary</topic><topic>Gastric Mucosa - metabolism</topic><topic>Gastritis - metabolism</topic><topic>Gastritis - microbiology</topic><topic>Gene expression</topic><topic>Gerbillinae</topic><topic>Helicobacter Infections - genetics</topic><topic>Helicobacter Infections - metabolism</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - isolation & purification</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Inoculation</topic><topic>Interleukin-1 - metabolism</topic><topic>Interleukin-1beta</topic><topic>Isoenzymes - metabolism</topic><topic>Macrophage Inflammatory Proteins - metabolism</topic><topic>Medical sciences</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitric Oxide Synthase Type II</topic><topic>Nitric-oxide synthase</topic><topic>Organ Size</topic><topic>Oxidative stress</topic><topic>Peptide Fragments - metabolism</topic><topic>Prostaglandin endoperoxide synthase</topic><topic>Prostaglandin-Endoperoxide Synthases - metabolism</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Stomach</topic><topic>Stomach - pathology</topic><topic>Tumor necrosis factor</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsubara, Satoshi</creatorcontrib><creatorcontrib>Shibata, Hideyuki</creatorcontrib><creatorcontrib>Takahashi, Mami</creatorcontrib><creatorcontrib>Ishikawa, Fumiyasu</creatorcontrib><creatorcontrib>Yokokura, Teruo</creatorcontrib><creatorcontrib>Sugimura, Takashi</creatorcontrib><creatorcontrib>Wakabayashi, Keiji</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsubara, Satoshi</au><au>Shibata, Hideyuki</au><au>Takahashi, Mami</au><au>Ishikawa, Fumiyasu</au><au>Yokokura, Teruo</au><au>Sugimura, Takashi</au><au>Wakabayashi, Keiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2004-10</date><risdate>2004</risdate><volume>95</volume><issue>10</issue><spage>798</spage><epage>802</epage><pages>798-802</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on identifying the nu‐cleotide sequences of cDNAs encoding Mongolian gerbil inflammatory proteins, such as interleukin‐1 (IL‐lβ), tumor necrosis factor a (TNF‐α), cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS). Furthermore, we examined the mRNA expression of these genes in the glandular stomach by RT‐PCR at 1–8 weeks after H. pylori infection. The deduced amino acid homol‐ogies to mouse, rat and human proteins were 86.2%, 83.6% and 67.8% for IL‐1β, 87.2%, 85.1% and 78.4% for TNF‐α, 91.9%, 90.2% and 84.8% for COX‐2 and 90.8%, 89.1% and 80.1% for iNOS, respectively. The average stomach weight of Mongolian gerbils inoculated with H. pylori was increased in a time‐dependent manner at 1, 2, 4 and 8 weeks after inoculation. In the py‐loric region, mRNA expression levels of IL‐1β, TNF‐α and iNOS were increased in H. pylori‐infected animals at the 2 weeks time point, while in the fundic region, expression levels of IL‐1β, TNF‐α and iNOS were elevated at 4 and 8 weeks. The COX‐2 expression level in the fundic region was clearly elevated in infected animals compared with control animals at 4 and 8 weeks, but in the py‐loric region, expression levels were similar in both infected and control animals. Thus, our results indicate that oxidative stress occurs from an early stage of H. pylori infection in the glandular stomach of Mongolian gerbils.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15504246</pmid><doi>10.1111/j.1349-7006.2004.tb02184.x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2004-10, Vol.95 (10), p.798-802 |
issn | 1347-9032 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11158252 |
source | Wiley Online Library Open Access |
subjects | Amino acids Animal models Animals Biological and medical sciences Cloning Cloning, Molecular Cyclooxygenase 2 DNA, Complementary Gastric Mucosa - metabolism Gastritis - metabolism Gastritis - microbiology Gene expression Gerbillinae Helicobacter Infections - genetics Helicobacter Infections - metabolism Helicobacter Infections - microbiology Helicobacter pylori Helicobacter pylori - isolation & purification Infections Inflammation Inoculation Interleukin-1 - metabolism Interleukin-1beta Isoenzymes - metabolism Macrophage Inflammatory Proteins - metabolism Medical sciences Nitric oxide Nitric Oxide Synthase - metabolism Nitric Oxide Synthase Type II Nitric-oxide synthase Organ Size Oxidative stress Peptide Fragments - metabolism Prostaglandin endoperoxide synthase Prostaglandin-Endoperoxide Synthases - metabolism Proteins Rodents Stomach Stomach - pathology Tumor necrosis factor Tumor Necrosis Factor-alpha - metabolism Tumor necrosis factor-TNF Tumors |
title | Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning%20of%20Mongolian%20gerbil%20cDNAs%20encoding%20inflammatory%20proteins,%20and%20their%20expression%20in%20glandular%20stomach%20during%20H.%20pylori%20infection&rft.jtitle=Cancer%20science&rft.au=Matsubara,%20Satoshi&rft.date=2004-10&rft.volume=95&rft.issue=10&rft.spage=798&rft.epage=802&rft.pages=798-802&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/j.1349-7006.2004.tb02184.x&rft_dat=%3Cproquest_24P%3E67005587%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399998531&rft_id=info:pmid/15504246&rfr_iscdi=true |