Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection

Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2004-10, Vol.95 (10), p.798-802
Hauptverfasser: Matsubara, Satoshi, Shibata, Hideyuki, Takahashi, Mami, Ishikawa, Fumiyasu, Yokokura, Teruo, Sugimura, Takashi, Wakabayashi, Keiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 10
container_start_page 798
container_title Cancer science
container_volume 95
creator Matsubara, Satoshi
Shibata, Hideyuki
Takahashi, Mami
Ishikawa, Fumiyasu
Yokokura, Teruo
Sugimura, Takashi
Wakabayashi, Keiji
description Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on identifying the nu‐cleotide sequences of cDNAs encoding Mongolian gerbil inflammatory proteins, such as interleukin‐1 (IL‐lβ), tumor necrosis factor a (TNF‐α), cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS). Furthermore, we examined the mRNA expression of these genes in the glandular stomach by RT‐PCR at 1–8 weeks after H. pylori infection. The deduced amino acid homol‐ogies to mouse, rat and human proteins were 86.2%, 83.6% and 67.8% for IL‐1β, 87.2%, 85.1% and 78.4% for TNF‐α, 91.9%, 90.2% and 84.8% for COX‐2 and 90.8%, 89.1% and 80.1% for iNOS, respectively. The average stomach weight of Mongolian gerbils inoculated with H. pylori was increased in a time‐dependent manner at 1, 2, 4 and 8 weeks after inoculation. In the py‐loric region, mRNA expression levels of IL‐1β, TNF‐α and iNOS were increased in H. pylori‐infected animals at the 2 weeks time point, while in the fundic region, expression levels of IL‐1β, TNF‐α and iNOS were elevated at 4 and 8 weeks. The COX‐2 expression level in the fundic region was clearly elevated in infected animals compared with control animals at 4 and 8 weeks, but in the py‐loric region, expression levels were similar in both infected and control animals. Thus, our results indicate that oxidative stress occurs from an early stage of H. pylori infection in the glandular stomach of Mongolian gerbils.
doi_str_mv 10.1111/j.1349-7006.2004.tb02184.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11158252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67005587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4808-d12210d613cd0c21d3e5ce6d500372845d7834798dc4a9c16a0990a9e1ce9cd63</originalsourceid><addsrcrecordid>eNqVkd-O1CAUxhujcdfVVzBEo1e2AgVavNBMxj9rsuqFek0YoB0mFEZodeYFfG6p0-yqd3IDyfmdj_OdrygeIVihfJ7vKlQTXjYQsgpDSKpxAzFqSXW4VZxfl27_fjclhzU-K-6ltIOwZoSTu8UZohQSTNh58XPtgre-B6EDH4Lvg7PSg97EjXVAvf64SsB4FfSMWN85OQxyDPEI9jGMxvr0DEivwbg1NgJz2EeTkg0-s6B3uTI5GUEawyDVFugpzjqXFdgfXYh2VjRqzPz94k4nXTIPlvui-Pr2zZf1ZXn16d379eqqVKSFbakRxghqhmqlocJI14YqwzTN1hrcEqqbNnvmrVZEcoWYhJxDyQ1ShivN6ovi1Ul3P20Go5XxY5RO7KMdZDyKIK34u-LtVvThu8h7py2mOCs8XRRi-DaZNIrBJmVcNmvClATLu6e0bTL4-B9wF6boszuBa55PS2uUqRcnSsWQUjTd9SwIzp8isRNzpGKOVMxpiyVtccjND_90c9O6xJuBJwsgk5Kui9Irm244hjlrKM3cyxP3wzpz_I8RxHr1Oa-7_gXGG8k-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399998531</pqid></control><display><type>article</type><title>Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection</title><source>Wiley Online Library Open Access</source><creator>Matsubara, Satoshi ; Shibata, Hideyuki ; Takahashi, Mami ; Ishikawa, Fumiyasu ; Yokokura, Teruo ; Sugimura, Takashi ; Wakabayashi, Keiji</creator><creatorcontrib>Matsubara, Satoshi ; Shibata, Hideyuki ; Takahashi, Mami ; Ishikawa, Fumiyasu ; Yokokura, Teruo ; Sugimura, Takashi ; Wakabayashi, Keiji</creatorcontrib><description>Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on identifying the nu‐cleotide sequences of cDNAs encoding Mongolian gerbil inflammatory proteins, such as interleukin‐1 (IL‐lβ), tumor necrosis factor a (TNF‐α), cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS). Furthermore, we examined the mRNA expression of these genes in the glandular stomach by RT‐PCR at 1–8 weeks after H. pylori infection. The deduced amino acid homol‐ogies to mouse, rat and human proteins were 86.2%, 83.6% and 67.8% for IL‐1β, 87.2%, 85.1% and 78.4% for TNF‐α, 91.9%, 90.2% and 84.8% for COX‐2 and 90.8%, 89.1% and 80.1% for iNOS, respectively. The average stomach weight of Mongolian gerbils inoculated with H. pylori was increased in a time‐dependent manner at 1, 2, 4 and 8 weeks after inoculation. In the py‐loric region, mRNA expression levels of IL‐1β, TNF‐α and iNOS were increased in H. pylori‐infected animals at the 2 weeks time point, while in the fundic region, expression levels of IL‐1β, TNF‐α and iNOS were elevated at 4 and 8 weeks. The COX‐2 expression level in the fundic region was clearly elevated in infected animals compared with control animals at 4 and 8 weeks, but in the py‐loric region, expression levels were similar in both infected and control animals. Thus, our results indicate that oxidative stress occurs from an early stage of H. pylori infection in the glandular stomach of Mongolian gerbils.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/j.1349-7006.2004.tb02184.x</identifier><identifier>PMID: 15504246</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino acids ; Animal models ; Animals ; Biological and medical sciences ; Cloning ; Cloning, Molecular ; Cyclooxygenase 2 ; DNA, Complementary ; Gastric Mucosa - metabolism ; Gastritis - metabolism ; Gastritis - microbiology ; Gene expression ; Gerbillinae ; Helicobacter Infections - genetics ; Helicobacter Infections - metabolism ; Helicobacter Infections - microbiology ; Helicobacter pylori ; Helicobacter pylori - isolation &amp; purification ; Infections ; Inflammation ; Inoculation ; Interleukin-1 - metabolism ; Interleukin-1beta ; Isoenzymes - metabolism ; Macrophage Inflammatory Proteins - metabolism ; Medical sciences ; Nitric oxide ; Nitric Oxide Synthase - metabolism ; Nitric Oxide Synthase Type II ; Nitric-oxide synthase ; Organ Size ; Oxidative stress ; Peptide Fragments - metabolism ; Prostaglandin endoperoxide synthase ; Prostaglandin-Endoperoxide Synthases - metabolism ; Proteins ; Rodents ; Stomach ; Stomach - pathology ; Tumor necrosis factor ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Tumors</subject><ispartof>Cancer science, 2004-10, Vol.95 (10), p.798-802</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright John Wiley &amp; Sons, Inc. Oct 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4808-d12210d613cd0c21d3e5ce6d500372845d7834798dc4a9c16a0990a9e1ce9cd63</citedby><cites>FETCH-LOGICAL-c4808-d12210d613cd0c21d3e5ce6d500372845d7834798dc4a9c16a0990a9e1ce9cd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11158252/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11158252/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,11543,27905,27906,45555,45556,46033,46457,53772,53774</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1349-7006.2004.tb02184.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16296755$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15504246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsubara, Satoshi</creatorcontrib><creatorcontrib>Shibata, Hideyuki</creatorcontrib><creatorcontrib>Takahashi, Mami</creatorcontrib><creatorcontrib>Ishikawa, Fumiyasu</creatorcontrib><creatorcontrib>Yokokura, Teruo</creatorcontrib><creatorcontrib>Sugimura, Takashi</creatorcontrib><creatorcontrib>Wakabayashi, Keiji</creatorcontrib><title>Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on identifying the nu‐cleotide sequences of cDNAs encoding Mongolian gerbil inflammatory proteins, such as interleukin‐1 (IL‐lβ), tumor necrosis factor a (TNF‐α), cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS). Furthermore, we examined the mRNA expression of these genes in the glandular stomach by RT‐PCR at 1–8 weeks after H. pylori infection. The deduced amino acid homol‐ogies to mouse, rat and human proteins were 86.2%, 83.6% and 67.8% for IL‐1β, 87.2%, 85.1% and 78.4% for TNF‐α, 91.9%, 90.2% and 84.8% for COX‐2 and 90.8%, 89.1% and 80.1% for iNOS, respectively. The average stomach weight of Mongolian gerbils inoculated with H. pylori was increased in a time‐dependent manner at 1, 2, 4 and 8 weeks after inoculation. In the py‐loric region, mRNA expression levels of IL‐1β, TNF‐α and iNOS were increased in H. pylori‐infected animals at the 2 weeks time point, while in the fundic region, expression levels of IL‐1β, TNF‐α and iNOS were elevated at 4 and 8 weeks. The COX‐2 expression level in the fundic region was clearly elevated in infected animals compared with control animals at 4 and 8 weeks, but in the py‐loric region, expression levels were similar in both infected and control animals. Thus, our results indicate that oxidative stress occurs from an early stage of H. pylori infection in the glandular stomach of Mongolian gerbils.</description><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>Cyclooxygenase 2</subject><subject>DNA, Complementary</subject><subject>Gastric Mucosa - metabolism</subject><subject>Gastritis - metabolism</subject><subject>Gastritis - microbiology</subject><subject>Gene expression</subject><subject>Gerbillinae</subject><subject>Helicobacter Infections - genetics</subject><subject>Helicobacter Infections - metabolism</subject><subject>Helicobacter Infections - microbiology</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - isolation &amp; purification</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Inoculation</subject><subject>Interleukin-1 - metabolism</subject><subject>Interleukin-1beta</subject><subject>Isoenzymes - metabolism</subject><subject>Macrophage Inflammatory Proteins - metabolism</subject><subject>Medical sciences</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitric Oxide Synthase Type II</subject><subject>Nitric-oxide synthase</subject><subject>Organ Size</subject><subject>Oxidative stress</subject><subject>Peptide Fragments - metabolism</subject><subject>Prostaglandin endoperoxide synthase</subject><subject>Prostaglandin-Endoperoxide Synthases - metabolism</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Stomach</subject><subject>Stomach - pathology</subject><subject>Tumor necrosis factor</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumors</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkd-O1CAUxhujcdfVVzBEo1e2AgVavNBMxj9rsuqFek0YoB0mFEZodeYFfG6p0-yqd3IDyfmdj_OdrygeIVihfJ7vKlQTXjYQsgpDSKpxAzFqSXW4VZxfl27_fjclhzU-K-6ltIOwZoSTu8UZohQSTNh58XPtgre-B6EDH4Lvg7PSg97EjXVAvf64SsB4FfSMWN85OQxyDPEI9jGMxvr0DEivwbg1NgJz2EeTkg0-s6B3uTI5GUEawyDVFugpzjqXFdgfXYh2VjRqzPz94k4nXTIPlvui-Pr2zZf1ZXn16d379eqqVKSFbakRxghqhmqlocJI14YqwzTN1hrcEqqbNnvmrVZEcoWYhJxDyQ1ShivN6ovi1Ul3P20Go5XxY5RO7KMdZDyKIK34u-LtVvThu8h7py2mOCs8XRRi-DaZNIrBJmVcNmvClATLu6e0bTL4-B9wF6boszuBa55PS2uUqRcnSsWQUjTd9SwIzp8isRNzpGKOVMxpiyVtccjND_90c9O6xJuBJwsgk5Kui9Irm244hjlrKM3cyxP3wzpz_I8RxHr1Oa-7_gXGG8k-</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Matsubara, Satoshi</creator><creator>Shibata, Hideyuki</creator><creator>Takahashi, Mami</creator><creator>Ishikawa, Fumiyasu</creator><creator>Yokokura, Teruo</creator><creator>Sugimura, Takashi</creator><creator>Wakabayashi, Keiji</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>John Wiley &amp; Sons, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200410</creationdate><title>Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection</title><author>Matsubara, Satoshi ; Shibata, Hideyuki ; Takahashi, Mami ; Ishikawa, Fumiyasu ; Yokokura, Teruo ; Sugimura, Takashi ; Wakabayashi, Keiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4808-d12210d613cd0c21d3e5ce6d500372845d7834798dc4a9c16a0990a9e1ce9cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>Cyclooxygenase 2</topic><topic>DNA, Complementary</topic><topic>Gastric Mucosa - metabolism</topic><topic>Gastritis - metabolism</topic><topic>Gastritis - microbiology</topic><topic>Gene expression</topic><topic>Gerbillinae</topic><topic>Helicobacter Infections - genetics</topic><topic>Helicobacter Infections - metabolism</topic><topic>Helicobacter Infections - microbiology</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - isolation &amp; purification</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Inoculation</topic><topic>Interleukin-1 - metabolism</topic><topic>Interleukin-1beta</topic><topic>Isoenzymes - metabolism</topic><topic>Macrophage Inflammatory Proteins - metabolism</topic><topic>Medical sciences</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitric Oxide Synthase Type II</topic><topic>Nitric-oxide synthase</topic><topic>Organ Size</topic><topic>Oxidative stress</topic><topic>Peptide Fragments - metabolism</topic><topic>Prostaglandin endoperoxide synthase</topic><topic>Prostaglandin-Endoperoxide Synthases - metabolism</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Stomach</topic><topic>Stomach - pathology</topic><topic>Tumor necrosis factor</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsubara, Satoshi</creatorcontrib><creatorcontrib>Shibata, Hideyuki</creatorcontrib><creatorcontrib>Takahashi, Mami</creatorcontrib><creatorcontrib>Ishikawa, Fumiyasu</creatorcontrib><creatorcontrib>Yokokura, Teruo</creatorcontrib><creatorcontrib>Sugimura, Takashi</creatorcontrib><creatorcontrib>Wakabayashi, Keiji</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsubara, Satoshi</au><au>Shibata, Hideyuki</au><au>Takahashi, Mami</au><au>Ishikawa, Fumiyasu</au><au>Yokokura, Teruo</au><au>Sugimura, Takashi</au><au>Wakabayashi, Keiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2004-10</date><risdate>2004</risdate><volume>95</volume><issue>10</issue><spage>798</spage><epage>802</epage><pages>798-802</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Mongolian gerbils are considered to be a good animal model for understanding the development of Helicobacter pylori‐associated diseases. However, limitations regarding the genetic information available for this animal species hamper the elucidation of underlying mechanisms. Thus, we have focused on identifying the nu‐cleotide sequences of cDNAs encoding Mongolian gerbil inflammatory proteins, such as interleukin‐1 (IL‐lβ), tumor necrosis factor a (TNF‐α), cyclooxygenase‐2 (COX‐2) and inducible nitric oxide synthase (iNOS). Furthermore, we examined the mRNA expression of these genes in the glandular stomach by RT‐PCR at 1–8 weeks after H. pylori infection. The deduced amino acid homol‐ogies to mouse, rat and human proteins were 86.2%, 83.6% and 67.8% for IL‐1β, 87.2%, 85.1% and 78.4% for TNF‐α, 91.9%, 90.2% and 84.8% for COX‐2 and 90.8%, 89.1% and 80.1% for iNOS, respectively. The average stomach weight of Mongolian gerbils inoculated with H. pylori was increased in a time‐dependent manner at 1, 2, 4 and 8 weeks after inoculation. In the py‐loric region, mRNA expression levels of IL‐1β, TNF‐α and iNOS were increased in H. pylori‐infected animals at the 2 weeks time point, while in the fundic region, expression levels of IL‐1β, TNF‐α and iNOS were elevated at 4 and 8 weeks. The COX‐2 expression level in the fundic region was clearly elevated in infected animals compared with control animals at 4 and 8 weeks, but in the py‐loric region, expression levels were similar in both infected and control animals. Thus, our results indicate that oxidative stress occurs from an early stage of H. pylori infection in the glandular stomach of Mongolian gerbils.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15504246</pmid><doi>10.1111/j.1349-7006.2004.tb02184.x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1347-9032
ispartof Cancer science, 2004-10, Vol.95 (10), p.798-802
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11158252
source Wiley Online Library Open Access
subjects Amino acids
Animal models
Animals
Biological and medical sciences
Cloning
Cloning, Molecular
Cyclooxygenase 2
DNA, Complementary
Gastric Mucosa - metabolism
Gastritis - metabolism
Gastritis - microbiology
Gene expression
Gerbillinae
Helicobacter Infections - genetics
Helicobacter Infections - metabolism
Helicobacter Infections - microbiology
Helicobacter pylori
Helicobacter pylori - isolation & purification
Infections
Inflammation
Inoculation
Interleukin-1 - metabolism
Interleukin-1beta
Isoenzymes - metabolism
Macrophage Inflammatory Proteins - metabolism
Medical sciences
Nitric oxide
Nitric Oxide Synthase - metabolism
Nitric Oxide Synthase Type II
Nitric-oxide synthase
Organ Size
Oxidative stress
Peptide Fragments - metabolism
Prostaglandin endoperoxide synthase
Prostaglandin-Endoperoxide Synthases - metabolism
Proteins
Rodents
Stomach
Stomach - pathology
Tumor necrosis factor
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
Tumors
title Cloning of Mongolian gerbil cDNAs encoding inflammatory proteins, and their expression in glandular stomach during H. pylori infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning%20of%20Mongolian%20gerbil%20cDNAs%20encoding%20inflammatory%20proteins,%20and%20their%20expression%20in%20glandular%20stomach%20during%20H.%20pylori%20infection&rft.jtitle=Cancer%20science&rft.au=Matsubara,%20Satoshi&rft.date=2004-10&rft.volume=95&rft.issue=10&rft.spage=798&rft.epage=802&rft.pages=798-802&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/j.1349-7006.2004.tb02184.x&rft_dat=%3Cproquest_24P%3E67005587%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399998531&rft_id=info:pmid/15504246&rfr_iscdi=true