Mixed-phase weak anion-exchange/reversed-phase LC–MS/MS for analysis of nucleotide sugars in human fibroblasts

Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the “activated” sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2024-06, Vol.416 (15), p.3595-3604
Hauptverfasser: Rahm, Moritz, Kwast, Hanneke, Wessels, Hans J. C. T., Noga, Marek J., Lefeber, Dirk J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3604
container_issue 15
container_start_page 3595
container_title Analytical and bioanalytical chemistry
container_volume 416
creator Rahm, Moritz
Kwast, Hanneke
Wessels, Hans J. C. T.
Noga, Marek J.
Lefeber, Dirk J.
description Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the “activated” sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nucleotide sugars. NS analysis is complicated by the presence of multiple stereoisomers without diagnostic transition ions, therefore requiring separation by liquid chromatography. In this paper, we explored weak anion-exchange/reversed-phase chromatography on a hybrid column for the separation of 17 nucleotide sugars that can occur in humans. A robust and reproducible method was established with intra- and inter-day coefficients of variation below 10% and a linear range spanning three orders of magnitude. Application to patient fibroblasts with genetic defects in mannose-1-phosphate guanylyltransferase beta, CDP- l -ribitol pyrophosphorylase A, and UDP- N -acetylglucosamine 2-epimerase/ N -acetylmannosamine kinase showed abnormal levels of guanosine-5′-diphosphate-α- d -mannose (GDP-Man), cytidine-5′-diphosphate- l -ribitol (CDP-ribitol), and cytidine-5′-monophosphate- N -acetyl-β- d -neuraminic acid (CMP-Neu5Ac), respectively, in consonance with expectations based on the diagnosis. In conclusion, a novel, semi-quantitative method was established for the analysis of nucleotide sugars that can be applied to diagnose several genetic glycosylation disorders in fibroblasts and beyond.
doi_str_mv 10.1007/s00216-024-05313-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11156716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065093731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-5f37383063770b369bf0b6b9b361cb5c2b897bacc56c75c0c608f1f60e96e0243</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi1ERS_wAiyQJTZshvgyY8-sEIpKQUrURWFt2c5x4jKxgz3TtDvegTfkSXBIGwoLVudI5zv_ufwIvaTkLSVETjIhjIqKsLoiDae82j5BJ1TQtmKiIU8Pec2O0WnO14TQpqXiGTrmrZCiZfwEbeb-FhbVZqUz4C3or1gHH0MFt3alwxImCW4g5QMym_78_mN-NZlfYRdTgXV_l33G0eEw2h7i4BeA87jUKWMf8Gpc64CdNymaXuchP0dHTvcZXtzHM_Tlw_nn6cdqdnnxafp-VtmaiaFqHJe85URwKYnhojOOGGG6klJrGstM20mjrW2ElY0lVpDWUScIdALKR_gZerfX3YxmDQsLYUi6V5vk1zrdqai9-rsS_Eot442ilDZCUlEU3twrpPhthDyotc8W-l4HiGNWnNSyqxnvdujrf9DrOKbymx1VvOjKMbRQbE_ZFHNO4A7bUKJ2jqq9o6rsr347qral6dXjOw4tDxYWgO-BXErFsfRn9n9kfwFCea5s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065093731</pqid></control><display><type>article</type><title>Mixed-phase weak anion-exchange/reversed-phase LC–MS/MS for analysis of nucleotide sugars in human fibroblasts</title><source>SpringerNature Journals</source><creator>Rahm, Moritz ; Kwast, Hanneke ; Wessels, Hans J. C. T. ; Noga, Marek J. ; Lefeber, Dirk J.</creator><creatorcontrib>Rahm, Moritz ; Kwast, Hanneke ; Wessels, Hans J. C. T. ; Noga, Marek J. ; Lefeber, Dirk J.</creatorcontrib><description>Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the “activated” sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nucleotide sugars. NS analysis is complicated by the presence of multiple stereoisomers without diagnostic transition ions, therefore requiring separation by liquid chromatography. In this paper, we explored weak anion-exchange/reversed-phase chromatography on a hybrid column for the separation of 17 nucleotide sugars that can occur in humans. A robust and reproducible method was established with intra- and inter-day coefficients of variation below 10% and a linear range spanning three orders of magnitude. Application to patient fibroblasts with genetic defects in mannose-1-phosphate guanylyltransferase beta, CDP- l -ribitol pyrophosphorylase A, and UDP- N -acetylglucosamine 2-epimerase/ N -acetylmannosamine kinase showed abnormal levels of guanosine-5′-diphosphate-α- d -mannose (GDP-Man), cytidine-5′-diphosphate- l -ribitol (CDP-ribitol), and cytidine-5′-monophosphate- N -acetyl-β- d -neuraminic acid (CMP-Neu5Ac), respectively, in consonance with expectations based on the diagnosis. In conclusion, a novel, semi-quantitative method was established for the analysis of nucleotide sugars that can be applied to diagnose several genetic glycosylation disorders in fibroblasts and beyond.</description><identifier>ISSN: 1618-2642</identifier><identifier>ISSN: 1618-2650</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-024-05313-w</identifier><identifier>PMID: 38676823</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Anion exchanging ; Biochemistry ; Biosynthesis ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Coefficient of variation ; Column chromatography ; Defects ; Epimerase ; Fibroblasts ; Food Science ; Glycoconjugates ; Glycosylation ; Kinases ; Laboratory Medicine ; Liquid chromatography ; Mannose ; Mannose-1-phosphate guanylyltransferase ; Monitoring/Environmental Analysis ; N-Acetylglucosamine ; Nucleotides ; Recent Advances in Ultrasensitive Omics Techniques ; Research Paper ; Separation ; Stereoisomerism ; Stereoisomers ; Substrates ; Sugar ; UDP-N-acetylglucosamine 2-epimerase</subject><ispartof>Analytical and bioanalytical chemistry, 2024-06, Vol.416 (15), p.3595-3604</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-5f37383063770b369bf0b6b9b361cb5c2b897bacc56c75c0c608f1f60e96e0243</cites><orcidid>0000-0001-5957-3127 ; 0009-0008-8519-4794 ; 0000-0001-8352-611X ; 0000-0001-7770-8398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-024-05313-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-024-05313-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38676823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahm, Moritz</creatorcontrib><creatorcontrib>Kwast, Hanneke</creatorcontrib><creatorcontrib>Wessels, Hans J. C. T.</creatorcontrib><creatorcontrib>Noga, Marek J.</creatorcontrib><creatorcontrib>Lefeber, Dirk J.</creatorcontrib><title>Mixed-phase weak anion-exchange/reversed-phase LC–MS/MS for analysis of nucleotide sugars in human fibroblasts</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the “activated” sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nucleotide sugars. NS analysis is complicated by the presence of multiple stereoisomers without diagnostic transition ions, therefore requiring separation by liquid chromatography. In this paper, we explored weak anion-exchange/reversed-phase chromatography on a hybrid column for the separation of 17 nucleotide sugars that can occur in humans. A robust and reproducible method was established with intra- and inter-day coefficients of variation below 10% and a linear range spanning three orders of magnitude. Application to patient fibroblasts with genetic defects in mannose-1-phosphate guanylyltransferase beta, CDP- l -ribitol pyrophosphorylase A, and UDP- N -acetylglucosamine 2-epimerase/ N -acetylmannosamine kinase showed abnormal levels of guanosine-5′-diphosphate-α- d -mannose (GDP-Man), cytidine-5′-diphosphate- l -ribitol (CDP-ribitol), and cytidine-5′-monophosphate- N -acetyl-β- d -neuraminic acid (CMP-Neu5Ac), respectively, in consonance with expectations based on the diagnosis. In conclusion, a novel, semi-quantitative method was established for the analysis of nucleotide sugars that can be applied to diagnose several genetic glycosylation disorders in fibroblasts and beyond.</description><subject>Analytical Chemistry</subject><subject>Anion exchanging</subject><subject>Biochemistry</subject><subject>Biosynthesis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Coefficient of variation</subject><subject>Column chromatography</subject><subject>Defects</subject><subject>Epimerase</subject><subject>Fibroblasts</subject><subject>Food Science</subject><subject>Glycoconjugates</subject><subject>Glycosylation</subject><subject>Kinases</subject><subject>Laboratory Medicine</subject><subject>Liquid chromatography</subject><subject>Mannose</subject><subject>Mannose-1-phosphate guanylyltransferase</subject><subject>Monitoring/Environmental Analysis</subject><subject>N-Acetylglucosamine</subject><subject>Nucleotides</subject><subject>Recent Advances in Ultrasensitive Omics Techniques</subject><subject>Research Paper</subject><subject>Separation</subject><subject>Stereoisomerism</subject><subject>Stereoisomers</subject><subject>Substrates</subject><subject>Sugar</subject><subject>UDP-N-acetylglucosamine 2-epimerase</subject><issn>1618-2642</issn><issn>1618-2650</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctuEzEUhi1ERS_wAiyQJTZshvgyY8-sEIpKQUrURWFt2c5x4jKxgz3TtDvegTfkSXBIGwoLVudI5zv_ufwIvaTkLSVETjIhjIqKsLoiDae82j5BJ1TQtmKiIU8Pec2O0WnO14TQpqXiGTrmrZCiZfwEbeb-FhbVZqUz4C3or1gHH0MFt3alwxImCW4g5QMym_78_mN-NZlfYRdTgXV_l33G0eEw2h7i4BeA87jUKWMf8Gpc64CdNymaXuchP0dHTvcZXtzHM_Tlw_nn6cdqdnnxafp-VtmaiaFqHJe85URwKYnhojOOGGG6klJrGstM20mjrW2ElY0lVpDWUScIdALKR_gZerfX3YxmDQsLYUi6V5vk1zrdqai9-rsS_Eot442ilDZCUlEU3twrpPhthDyotc8W-l4HiGNWnNSyqxnvdujrf9DrOKbymx1VvOjKMbRQbE_ZFHNO4A7bUKJ2jqq9o6rsr347qral6dXjOw4tDxYWgO-BXErFsfRn9n9kfwFCea5s</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Rahm, Moritz</creator><creator>Kwast, Hanneke</creator><creator>Wessels, Hans J. C. T.</creator><creator>Noga, Marek J.</creator><creator>Lefeber, Dirk J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5957-3127</orcidid><orcidid>https://orcid.org/0009-0008-8519-4794</orcidid><orcidid>https://orcid.org/0000-0001-8352-611X</orcidid><orcidid>https://orcid.org/0000-0001-7770-8398</orcidid></search><sort><creationdate>20240601</creationdate><title>Mixed-phase weak anion-exchange/reversed-phase LC–MS/MS for analysis of nucleotide sugars in human fibroblasts</title><author>Rahm, Moritz ; Kwast, Hanneke ; Wessels, Hans J. C. T. ; Noga, Marek J. ; Lefeber, Dirk J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-5f37383063770b369bf0b6b9b361cb5c2b897bacc56c75c0c608f1f60e96e0243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical Chemistry</topic><topic>Anion exchanging</topic><topic>Biochemistry</topic><topic>Biosynthesis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Coefficient of variation</topic><topic>Column chromatography</topic><topic>Defects</topic><topic>Epimerase</topic><topic>Fibroblasts</topic><topic>Food Science</topic><topic>Glycoconjugates</topic><topic>Glycosylation</topic><topic>Kinases</topic><topic>Laboratory Medicine</topic><topic>Liquid chromatography</topic><topic>Mannose</topic><topic>Mannose-1-phosphate guanylyltransferase</topic><topic>Monitoring/Environmental Analysis</topic><topic>N-Acetylglucosamine</topic><topic>Nucleotides</topic><topic>Recent Advances in Ultrasensitive Omics Techniques</topic><topic>Research Paper</topic><topic>Separation</topic><topic>Stereoisomerism</topic><topic>Stereoisomers</topic><topic>Substrates</topic><topic>Sugar</topic><topic>UDP-N-acetylglucosamine 2-epimerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahm, Moritz</creatorcontrib><creatorcontrib>Kwast, Hanneke</creatorcontrib><creatorcontrib>Wessels, Hans J. C. T.</creatorcontrib><creatorcontrib>Noga, Marek J.</creatorcontrib><creatorcontrib>Lefeber, Dirk J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahm, Moritz</au><au>Kwast, Hanneke</au><au>Wessels, Hans J. C. T.</au><au>Noga, Marek J.</au><au>Lefeber, Dirk J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-phase weak anion-exchange/reversed-phase LC–MS/MS for analysis of nucleotide sugars in human fibroblasts</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>416</volume><issue>15</issue><spage>3595</spage><epage>3604</epage><pages>3595-3604</pages><issn>1618-2642</issn><issn>1618-2650</issn><eissn>1618-2650</eissn><abstract>Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the “activated” sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nucleotide sugars. NS analysis is complicated by the presence of multiple stereoisomers without diagnostic transition ions, therefore requiring separation by liquid chromatography. In this paper, we explored weak anion-exchange/reversed-phase chromatography on a hybrid column for the separation of 17 nucleotide sugars that can occur in humans. A robust and reproducible method was established with intra- and inter-day coefficients of variation below 10% and a linear range spanning three orders of magnitude. Application to patient fibroblasts with genetic defects in mannose-1-phosphate guanylyltransferase beta, CDP- l -ribitol pyrophosphorylase A, and UDP- N -acetylglucosamine 2-epimerase/ N -acetylmannosamine kinase showed abnormal levels of guanosine-5′-diphosphate-α- d -mannose (GDP-Man), cytidine-5′-diphosphate- l -ribitol (CDP-ribitol), and cytidine-5′-monophosphate- N -acetyl-β- d -neuraminic acid (CMP-Neu5Ac), respectively, in consonance with expectations based on the diagnosis. In conclusion, a novel, semi-quantitative method was established for the analysis of nucleotide sugars that can be applied to diagnose several genetic glycosylation disorders in fibroblasts and beyond.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38676823</pmid><doi>10.1007/s00216-024-05313-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5957-3127</orcidid><orcidid>https://orcid.org/0009-0008-8519-4794</orcidid><orcidid>https://orcid.org/0000-0001-8352-611X</orcidid><orcidid>https://orcid.org/0000-0001-7770-8398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2024-06, Vol.416 (15), p.3595-3604
issn 1618-2642
1618-2650
1618-2650
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11156716
source SpringerNature Journals
subjects Analytical Chemistry
Anion exchanging
Biochemistry
Biosynthesis
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chromatography
Coefficient of variation
Column chromatography
Defects
Epimerase
Fibroblasts
Food Science
Glycoconjugates
Glycosylation
Kinases
Laboratory Medicine
Liquid chromatography
Mannose
Mannose-1-phosphate guanylyltransferase
Monitoring/Environmental Analysis
N-Acetylglucosamine
Nucleotides
Recent Advances in Ultrasensitive Omics Techniques
Research Paper
Separation
Stereoisomerism
Stereoisomers
Substrates
Sugar
UDP-N-acetylglucosamine 2-epimerase
title Mixed-phase weak anion-exchange/reversed-phase LC–MS/MS for analysis of nucleotide sugars in human fibroblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-phase%20weak%20anion-exchange/reversed-phase%20LC%E2%80%93MS/MS%20for%20analysis%20of%20nucleotide%20sugars%20in%20human%20fibroblasts&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Rahm,%20Moritz&rft.date=2024-06-01&rft.volume=416&rft.issue=15&rft.spage=3595&rft.epage=3604&rft.pages=3595-3604&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-024-05313-w&rft_dat=%3Cproquest_pubme%3E3065093731%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065093731&rft_id=info:pmid/38676823&rfr_iscdi=true