Acquisition of epithelial plasticity in human chronic liver disease
For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized 1 – 4 , but technical challenges and ethical aspects are limiting the...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-06, Vol.630 (8015), p.166-173 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 8015 |
container_start_page | 166 |
container_title | Nature (London) |
container_volume | 630 |
creator | Gribben, Christopher Galanakis, Vasileios Calderwood, Alexander Williams, Eleanor C. Chazarra-Gil, Ruben Larraz, Miguel Frau, Carla Puengel, Tobias Guillot, Adrien Rouhani, Foad J. Mahbubani, Krishnaa Godfrey, Edmund Davies, Susan E. Athanasiadis, Emmanouil Saeb-Parsy, Kourosh Tacke, Frank Allison, Michael Mohorianu, Irina Vallier, Ludovic |
description | For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized
1
–
4
, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K–AKT–mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Single-cell RNA sequencing and 3D imaging have revealed the cellular changes and structural reorganization that occur during the progression of human chronic liver disease and as the liver attempts to regenerate. |
doi_str_mv | 10.1038/s41586-024-07465-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11153150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069284136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-9842e064604fcb043ae4b9d1fe455a8d1171281c77e5d7595f223ecb017bac473</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhiMEotuWP8ABjcSFy9A4cT7mhKoVFKRKvdBzlM14uqlmM9tkplL_fQNbyseBkw9-_NrWw9hb4B-BS3tWEJTVLRfYcoNateIFWwEa3aK25iVbcS5sy63UR-y4lFvOuQKDr9mRtMZYAFyx9Xm4W2KJc5xSMw0N7eO8pTH6sdmPvswxxPmhianZLjufmrDNU4qhGeM95aaPhXyhU_Zq8GOhN0_1hF1_-fx9_bW9vLr4tj6_bAMKPbedRUFco-Y4hA1H6Qk3XQ8DoVLe9gAGhIVgDKneqE4NQkiqJJiND2jkCft0yN0vmx31gdKc_ej2Oe58fnCTj-7vTopbdzPdOwBQEhSvCR-eEvJ0t1CZ3S6WQOPoE01LcZKrTig0Civ6_h_0dlpyqv9VSnfCIkhdKXGgQp5KyTQ8XwPc_ZDkDpJcleR-SnKiDr3784_nkV9WKiAPQKmtdEP59-7_xD4Cq9edAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069284136</pqid></control><display><type>article</type><title>Acquisition of epithelial plasticity in human chronic liver disease</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Gribben, Christopher ; Galanakis, Vasileios ; Calderwood, Alexander ; Williams, Eleanor C. ; Chazarra-Gil, Ruben ; Larraz, Miguel ; Frau, Carla ; Puengel, Tobias ; Guillot, Adrien ; Rouhani, Foad J. ; Mahbubani, Krishnaa ; Godfrey, Edmund ; Davies, Susan E. ; Athanasiadis, Emmanouil ; Saeb-Parsy, Kourosh ; Tacke, Frank ; Allison, Michael ; Mohorianu, Irina ; Vallier, Ludovic</creator><creatorcontrib>Gribben, Christopher ; Galanakis, Vasileios ; Calderwood, Alexander ; Williams, Eleanor C. ; Chazarra-Gil, Ruben ; Larraz, Miguel ; Frau, Carla ; Puengel, Tobias ; Guillot, Adrien ; Rouhani, Foad J. ; Mahbubani, Krishnaa ; Godfrey, Edmund ; Davies, Susan E. ; Athanasiadis, Emmanouil ; Saeb-Parsy, Kourosh ; Tacke, Frank ; Allison, Michael ; Mohorianu, Irina ; Vallier, Ludovic</creatorcontrib><description>For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized
1
–
4
, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K–AKT–mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Single-cell RNA sequencing and 3D imaging have revealed the cellular changes and structural reorganization that occur during the progression of human chronic liver disease and as the liver attempts to regenerate.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07465-2</identifier><identifier>PMID: 38778114</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>1-Phosphatidylinositol 3-kinase ; 13/100 ; 13/106 ; 13/51 ; 14/19 ; 45/100 ; 45/91 ; 631/532/2128 ; 631/532/489 ; AKT protein ; Animal models ; Biliary tract ; Biliary Tract - cytology ; Biliary Tract - metabolism ; Biliary Tract - pathology ; Biopsy ; Cell activation ; Cell Plasticity ; Cell Transdifferentiation ; Chronic Disease ; Chronic illnesses ; Disease Progression ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Epithelial Cells - pathology ; Experiments ; Gene sequencing ; Hepatocytes ; Hepatocytes - cytology ; Hepatocytes - metabolism ; Hepatocytes - pathology ; Humanities and Social Sciences ; Humans ; Injuries ; Insulin - metabolism ; Keratin ; Liver ; Liver - cytology ; Liver - metabolism ; Liver - pathology ; Liver cirrhosis ; Liver diseases ; Liver Diseases - metabolism ; Liver Diseases - pathology ; Liver Regeneration ; Metabolism ; multidisciplinary ; Organoids ; Organoids - metabolism ; Organoids - pathology ; Organs ; Phosphatidylinositol 3-Kinases - metabolism ; Plastic foam ; Plastic properties ; Plasticity ; Progenitor cells ; Proto-Oncogene Proteins c-akt - metabolism ; Quality control ; Regeneration (physiology) ; RNA-Seq ; Science ; Science (multidisciplinary) ; Signal Transduction ; Single-Cell Analysis ; snRNA ; Stem cells ; Three dimensional imaging ; Tissue engineering ; TOR Serine-Threonine Kinases - metabolism ; Zonation</subject><ispartof>Nature (London), 2024-06, Vol.630 (8015), p.166-173</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Jun 6, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-9842e064604fcb043ae4b9d1fe455a8d1171281c77e5d7595f223ecb017bac473</cites><orcidid>0000-0002-0633-3696 ; 0000-0003-2662-6127 ; 0000-0002-3848-2602 ; 0000-0002-8016-3613 ; 0000-0003-4863-761X ; 0000-0001-6206-0226 ; 0000-0002-6002-9986 ; 0000-0002-2771-5562 ; 0000-0002-1327-2334 ; 0000-0002-8023-9550 ; 0000-0003-3677-3294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07465-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07465-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38778114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gribben, Christopher</creatorcontrib><creatorcontrib>Galanakis, Vasileios</creatorcontrib><creatorcontrib>Calderwood, Alexander</creatorcontrib><creatorcontrib>Williams, Eleanor C.</creatorcontrib><creatorcontrib>Chazarra-Gil, Ruben</creatorcontrib><creatorcontrib>Larraz, Miguel</creatorcontrib><creatorcontrib>Frau, Carla</creatorcontrib><creatorcontrib>Puengel, Tobias</creatorcontrib><creatorcontrib>Guillot, Adrien</creatorcontrib><creatorcontrib>Rouhani, Foad J.</creatorcontrib><creatorcontrib>Mahbubani, Krishnaa</creatorcontrib><creatorcontrib>Godfrey, Edmund</creatorcontrib><creatorcontrib>Davies, Susan E.</creatorcontrib><creatorcontrib>Athanasiadis, Emmanouil</creatorcontrib><creatorcontrib>Saeb-Parsy, Kourosh</creatorcontrib><creatorcontrib>Tacke, Frank</creatorcontrib><creatorcontrib>Allison, Michael</creatorcontrib><creatorcontrib>Mohorianu, Irina</creatorcontrib><creatorcontrib>Vallier, Ludovic</creatorcontrib><title>Acquisition of epithelial plasticity in human chronic liver disease</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized
1
–
4
, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K–AKT–mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Single-cell RNA sequencing and 3D imaging have revealed the cellular changes and structural reorganization that occur during the progression of human chronic liver disease and as the liver attempts to regenerate.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>13/100</subject><subject>13/106</subject><subject>13/51</subject><subject>14/19</subject><subject>45/100</subject><subject>45/91</subject><subject>631/532/2128</subject><subject>631/532/489</subject><subject>AKT protein</subject><subject>Animal models</subject><subject>Biliary tract</subject><subject>Biliary Tract - cytology</subject><subject>Biliary Tract - metabolism</subject><subject>Biliary Tract - pathology</subject><subject>Biopsy</subject><subject>Cell activation</subject><subject>Cell Plasticity</subject><subject>Cell Transdifferentiation</subject><subject>Chronic Disease</subject><subject>Chronic illnesses</subject><subject>Disease Progression</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - pathology</subject><subject>Experiments</subject><subject>Gene sequencing</subject><subject>Hepatocytes</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - pathology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Injuries</subject><subject>Insulin - metabolism</subject><subject>Keratin</subject><subject>Liver</subject><subject>Liver - cytology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver cirrhosis</subject><subject>Liver diseases</subject><subject>Liver Diseases - metabolism</subject><subject>Liver Diseases - pathology</subject><subject>Liver Regeneration</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>Organoids</subject><subject>Organoids - metabolism</subject><subject>Organoids - pathology</subject><subject>Organs</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Plastic foam</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Progenitor cells</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Quality control</subject><subject>Regeneration (physiology)</subject><subject>RNA-Seq</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><subject>snRNA</subject><subject>Stem cells</subject><subject>Three dimensional imaging</subject><subject>Tissue engineering</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Zonation</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1vFDEMhiMEotuWP8ABjcSFy9A4cT7mhKoVFKRKvdBzlM14uqlmM9tkplL_fQNbyseBkw9-_NrWw9hb4B-BS3tWEJTVLRfYcoNateIFWwEa3aK25iVbcS5sy63UR-y4lFvOuQKDr9mRtMZYAFyx9Xm4W2KJc5xSMw0N7eO8pTH6sdmPvswxxPmhianZLjufmrDNU4qhGeM95aaPhXyhU_Zq8GOhN0_1hF1_-fx9_bW9vLr4tj6_bAMKPbedRUFco-Y4hA1H6Qk3XQ8DoVLe9gAGhIVgDKneqE4NQkiqJJiND2jkCft0yN0vmx31gdKc_ej2Oe58fnCTj-7vTopbdzPdOwBQEhSvCR-eEvJ0t1CZ3S6WQOPoE01LcZKrTig0Civ6_h_0dlpyqv9VSnfCIkhdKXGgQp5KyTQ8XwPc_ZDkDpJcleR-SnKiDr3784_nkV9WKiAPQKmtdEP59-7_xD4Cq9edAw</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Gribben, Christopher</creator><creator>Galanakis, Vasileios</creator><creator>Calderwood, Alexander</creator><creator>Williams, Eleanor C.</creator><creator>Chazarra-Gil, Ruben</creator><creator>Larraz, Miguel</creator><creator>Frau, Carla</creator><creator>Puengel, Tobias</creator><creator>Guillot, Adrien</creator><creator>Rouhani, Foad J.</creator><creator>Mahbubani, Krishnaa</creator><creator>Godfrey, Edmund</creator><creator>Davies, Susan E.</creator><creator>Athanasiadis, Emmanouil</creator><creator>Saeb-Parsy, Kourosh</creator><creator>Tacke, Frank</creator><creator>Allison, Michael</creator><creator>Mohorianu, Irina</creator><creator>Vallier, Ludovic</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0633-3696</orcidid><orcidid>https://orcid.org/0000-0003-2662-6127</orcidid><orcidid>https://orcid.org/0000-0002-3848-2602</orcidid><orcidid>https://orcid.org/0000-0002-8016-3613</orcidid><orcidid>https://orcid.org/0000-0003-4863-761X</orcidid><orcidid>https://orcid.org/0000-0001-6206-0226</orcidid><orcidid>https://orcid.org/0000-0002-6002-9986</orcidid><orcidid>https://orcid.org/0000-0002-2771-5562</orcidid><orcidid>https://orcid.org/0000-0002-1327-2334</orcidid><orcidid>https://orcid.org/0000-0002-8023-9550</orcidid><orcidid>https://orcid.org/0000-0003-3677-3294</orcidid></search><sort><creationdate>20240606</creationdate><title>Acquisition of epithelial plasticity in human chronic liver disease</title><author>Gribben, Christopher ; Galanakis, Vasileios ; Calderwood, Alexander ; Williams, Eleanor C. ; Chazarra-Gil, Ruben ; Larraz, Miguel ; Frau, Carla ; Puengel, Tobias ; Guillot, Adrien ; Rouhani, Foad J. ; Mahbubani, Krishnaa ; Godfrey, Edmund ; Davies, Susan E. ; Athanasiadis, Emmanouil ; Saeb-Parsy, Kourosh ; Tacke, Frank ; Allison, Michael ; Mohorianu, Irina ; Vallier, Ludovic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-9842e064604fcb043ae4b9d1fe455a8d1171281c77e5d7595f223ecb017bac473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>13/100</topic><topic>13/106</topic><topic>13/51</topic><topic>14/19</topic><topic>45/100</topic><topic>45/91</topic><topic>631/532/2128</topic><topic>631/532/489</topic><topic>AKT protein</topic><topic>Animal models</topic><topic>Biliary tract</topic><topic>Biliary Tract - cytology</topic><topic>Biliary Tract - metabolism</topic><topic>Biliary Tract - pathology</topic><topic>Biopsy</topic><topic>Cell activation</topic><topic>Cell Plasticity</topic><topic>Cell Transdifferentiation</topic><topic>Chronic Disease</topic><topic>Chronic illnesses</topic><topic>Disease Progression</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - pathology</topic><topic>Experiments</topic><topic>Gene sequencing</topic><topic>Hepatocytes</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - pathology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Injuries</topic><topic>Insulin - metabolism</topic><topic>Keratin</topic><topic>Liver</topic><topic>Liver - cytology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver cirrhosis</topic><topic>Liver diseases</topic><topic>Liver Diseases - metabolism</topic><topic>Liver Diseases - pathology</topic><topic>Liver Regeneration</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>Organoids</topic><topic>Organoids - metabolism</topic><topic>Organoids - pathology</topic><topic>Organs</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Plastic foam</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Progenitor cells</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Quality control</topic><topic>Regeneration (physiology)</topic><topic>RNA-Seq</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><topic>snRNA</topic><topic>Stem cells</topic><topic>Three dimensional imaging</topic><topic>Tissue engineering</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gribben, Christopher</creatorcontrib><creatorcontrib>Galanakis, Vasileios</creatorcontrib><creatorcontrib>Calderwood, Alexander</creatorcontrib><creatorcontrib>Williams, Eleanor C.</creatorcontrib><creatorcontrib>Chazarra-Gil, Ruben</creatorcontrib><creatorcontrib>Larraz, Miguel</creatorcontrib><creatorcontrib>Frau, Carla</creatorcontrib><creatorcontrib>Puengel, Tobias</creatorcontrib><creatorcontrib>Guillot, Adrien</creatorcontrib><creatorcontrib>Rouhani, Foad J.</creatorcontrib><creatorcontrib>Mahbubani, Krishnaa</creatorcontrib><creatorcontrib>Godfrey, Edmund</creatorcontrib><creatorcontrib>Davies, Susan E.</creatorcontrib><creatorcontrib>Athanasiadis, Emmanouil</creatorcontrib><creatorcontrib>Saeb-Parsy, Kourosh</creatorcontrib><creatorcontrib>Tacke, Frank</creatorcontrib><creatorcontrib>Allison, Michael</creatorcontrib><creatorcontrib>Mohorianu, Irina</creatorcontrib><creatorcontrib>Vallier, Ludovic</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gribben, Christopher</au><au>Galanakis, Vasileios</au><au>Calderwood, Alexander</au><au>Williams, Eleanor C.</au><au>Chazarra-Gil, Ruben</au><au>Larraz, Miguel</au><au>Frau, Carla</au><au>Puengel, Tobias</au><au>Guillot, Adrien</au><au>Rouhani, Foad J.</au><au>Mahbubani, Krishnaa</au><au>Godfrey, Edmund</au><au>Davies, Susan E.</au><au>Athanasiadis, Emmanouil</au><au>Saeb-Parsy, Kourosh</au><au>Tacke, Frank</au><au>Allison, Michael</au><au>Mohorianu, Irina</au><au>Vallier, Ludovic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acquisition of epithelial plasticity in human chronic liver disease</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-06-06</date><risdate>2024</risdate><volume>630</volume><issue>8015</issue><spage>166</spage><epage>173</epage><pages>166-173</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized
1
–
4
, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K–AKT–mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Single-cell RNA sequencing and 3D imaging have revealed the cellular changes and structural reorganization that occur during the progression of human chronic liver disease and as the liver attempts to regenerate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38778114</pmid><doi>10.1038/s41586-024-07465-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0633-3696</orcidid><orcidid>https://orcid.org/0000-0003-2662-6127</orcidid><orcidid>https://orcid.org/0000-0002-3848-2602</orcidid><orcidid>https://orcid.org/0000-0002-8016-3613</orcidid><orcidid>https://orcid.org/0000-0003-4863-761X</orcidid><orcidid>https://orcid.org/0000-0001-6206-0226</orcidid><orcidid>https://orcid.org/0000-0002-6002-9986</orcidid><orcidid>https://orcid.org/0000-0002-2771-5562</orcidid><orcidid>https://orcid.org/0000-0002-1327-2334</orcidid><orcidid>https://orcid.org/0000-0002-8023-9550</orcidid><orcidid>https://orcid.org/0000-0003-3677-3294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-06, Vol.630 (8015), p.166-173 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11153150 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 1-Phosphatidylinositol 3-kinase 13/100 13/106 13/51 14/19 45/100 45/91 631/532/2128 631/532/489 AKT protein Animal models Biliary tract Biliary Tract - cytology Biliary Tract - metabolism Biliary Tract - pathology Biopsy Cell activation Cell Plasticity Cell Transdifferentiation Chronic Disease Chronic illnesses Disease Progression Epithelial Cells - cytology Epithelial Cells - metabolism Epithelial Cells - pathology Experiments Gene sequencing Hepatocytes Hepatocytes - cytology Hepatocytes - metabolism Hepatocytes - pathology Humanities and Social Sciences Humans Injuries Insulin - metabolism Keratin Liver Liver - cytology Liver - metabolism Liver - pathology Liver cirrhosis Liver diseases Liver Diseases - metabolism Liver Diseases - pathology Liver Regeneration Metabolism multidisciplinary Organoids Organoids - metabolism Organoids - pathology Organs Phosphatidylinositol 3-Kinases - metabolism Plastic foam Plastic properties Plasticity Progenitor cells Proto-Oncogene Proteins c-akt - metabolism Quality control Regeneration (physiology) RNA-Seq Science Science (multidisciplinary) Signal Transduction Single-Cell Analysis snRNA Stem cells Three dimensional imaging Tissue engineering TOR Serine-Threonine Kinases - metabolism Zonation |
title | Acquisition of epithelial plasticity in human chronic liver disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acquisition%20of%20epithelial%20plasticity%20in%20human%20chronic%20liver%20disease&rft.jtitle=Nature%20(London)&rft.au=Gribben,%20Christopher&rft.date=2024-06-06&rft.volume=630&rft.issue=8015&rft.spage=166&rft.epage=173&rft.pages=166-173&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07465-2&rft_dat=%3Cproquest_pubme%3E3069284136%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069284136&rft_id=info:pmid/38778114&rfr_iscdi=true |