Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming
Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature...
Gespeichert in:
Veröffentlicht in: | Temperature (Austin) 2024, Vol.11 (2), p.137-156 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | 2 |
container_start_page | 137 |
container_title | Temperature (Austin) |
container_volume | 11 |
creator | Giraud, Dorian Pomportes, Laura Nicol, Caroline Bertin, Denis Gardarein, Jean-Laurent Hays, Arnaud |
description | Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higher
$\dot{{\rm V}}$
V
˙
O
2
in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min
−1
.kg
−1
) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min
−1
) (p |
doi_str_mv | 10.1080/23328940.2024.2303332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11152100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065979605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3662-56ac5dadc9d5d7f303b7444b96da02af2fa1d02c49cee475ce374ea0243d94303</originalsourceid><addsrcrecordid>eNp9kUuPEzEQhEcIxK6W_QkgH-Ewwa95mAssK2CRgrjA2XLsnsRoxg7tmWRz5ZfjUbIRcOBkq7qqWq2vKJ4zumC0pa-5ELxVki445XLBBRVZeFRcznrZqko9Pv8lvSiuU_pBKWV1K4TiT4sL0bayrri8LH59AbsxwaeB-LCL_Q4ciR3ZxjSWcA9ofQJiY-_I3oyAxA8DYPIxvCHv-xgdQXA-jehX05hVYoLLRRbB5JwPBALg-kDgfgvB-XFCIG5CH9Y5uDc45N-z4kln-gTXp_eq-P7xw7fbu3L59dPn25tlaUVd87Kqja2ccVa5yjVdvnnVSClXqnaGctPxzjBHuZXKAsimsiAaCXkkhVMy26-Kt8fe7bQawFkII5peb9EPBg86Gq__ngS_0eu404yxijM6N7w6Nmz-yd3dLPWsUSkZE0LuePa-PG3D-HOCNOrBJwt9bwLEKWlB60o1qqZVtlZHq8WYEkJ37mZUz7z1A28989Yn3jn34s-DzqkHutnw7mjwoYs4mH3E3unRHPqIHZqQ4Wrx_x2_AWUEvPE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065979605</pqid></control><display><type>article</type><title>Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming</title><source>PubMed</source><creator>Giraud, Dorian ; Pomportes, Laura ; Nicol, Caroline ; Bertin, Denis ; Gardarein, Jean-Laurent ; Hays, Arnaud</creator><creatorcontrib>Giraud, Dorian ; Pomportes, Laura ; Nicol, Caroline ; Bertin, Denis ; Gardarein, Jean-Laurent ; Hays, Arnaud</creatorcontrib><description>Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higher
$\dot{{\rm V}}$
V
˙
O
2
in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min
−1
.kg
−1
) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min
−1
) (p < 0.001). Only after CWI, R3 showed a progressive decrease in vastus and gastrocnemius medialis O
2
saturation, significant after 34 minutes (p < 0.001). As blood flow did not differ from the AMB protocol, this indicated local thermogenesis in the immersed part of the body. After CWI, a lower gastrointestinal temperature on resumption of cycling compared to AMB (36.31(0.45) vs. 37.30(0.49) °C, p < 0.001) indicated incomplete muscle thermogenesis. In conclusion, the rewarming period after CWI was non-linear and metabolically costly. Immersion and rewarming should be considered as a continuum rather than separate events.</description><identifier>ISSN: 2332-8940</identifier><identifier>ISSN: 2332-8959</identifier><identifier>EISSN: 2332-8959</identifier><identifier>DOI: 10.1080/23328940.2024.2303332</identifier><identifier>PMID: 38846524</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>cardiocirculatory system ; cold-water immersion ; core temperature ; Human health and pathology ; Life Sciences ; metabolic kinetics ; muscle oxygenation ; oxygen uptake ; Research Paper ; Thermoregulation ; Tissues and Organs</subject><ispartof>Temperature (Austin), 2024, Vol.11 (2), p.137-156</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3662-56ac5dadc9d5d7f303b7444b96da02af2fa1d02c49cee475ce374ea0243d94303</cites><orcidid>0000-0003-0267-8571 ; 0000-0003-1141-4156 ; 0000-0003-2349-2565 ; 0000-0002-5871-2284 ; 0000-0002-2166-1225 ; 0000-0002-1679-0807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,27902,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38846524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04411334$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giraud, Dorian</creatorcontrib><creatorcontrib>Pomportes, Laura</creatorcontrib><creatorcontrib>Nicol, Caroline</creatorcontrib><creatorcontrib>Bertin, Denis</creatorcontrib><creatorcontrib>Gardarein, Jean-Laurent</creatorcontrib><creatorcontrib>Hays, Arnaud</creatorcontrib><title>Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming</title><title>Temperature (Austin)</title><addtitle>Temperature (Austin)</addtitle><description>Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higher
$\dot{{\rm V}}$
V
˙
O
2
in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min
−1
.kg
−1
) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min
−1
) (p < 0.001). Only after CWI, R3 showed a progressive decrease in vastus and gastrocnemius medialis O
2
saturation, significant after 34 minutes (p < 0.001). As blood flow did not differ from the AMB protocol, this indicated local thermogenesis in the immersed part of the body. After CWI, a lower gastrointestinal temperature on resumption of cycling compared to AMB (36.31(0.45) vs. 37.30(0.49) °C, p < 0.001) indicated incomplete muscle thermogenesis. In conclusion, the rewarming period after CWI was non-linear and metabolically costly. Immersion and rewarming should be considered as a continuum rather than separate events.</description><subject>cardiocirculatory system</subject><subject>cold-water immersion</subject><subject>core temperature</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>metabolic kinetics</subject><subject>muscle oxygenation</subject><subject>oxygen uptake</subject><subject>Research Paper</subject><subject>Thermoregulation</subject><subject>Tissues and Organs</subject><issn>2332-8940</issn><issn>2332-8959</issn><issn>2332-8959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kUuPEzEQhEcIxK6W_QkgH-Ewwa95mAssK2CRgrjA2XLsnsRoxg7tmWRz5ZfjUbIRcOBkq7qqWq2vKJ4zumC0pa-5ELxVki445XLBBRVZeFRcznrZqko9Pv8lvSiuU_pBKWV1K4TiT4sL0bayrri8LH59AbsxwaeB-LCL_Q4ciR3ZxjSWcA9ofQJiY-_I3oyAxA8DYPIxvCHv-xgdQXA-jehX05hVYoLLRRbB5JwPBALg-kDgfgvB-XFCIG5CH9Y5uDc45N-z4kln-gTXp_eq-P7xw7fbu3L59dPn25tlaUVd87Kqja2ccVa5yjVdvnnVSClXqnaGctPxzjBHuZXKAsimsiAaCXkkhVMy26-Kt8fe7bQawFkII5peb9EPBg86Gq__ngS_0eu404yxijM6N7w6Nmz-yd3dLPWsUSkZE0LuePa-PG3D-HOCNOrBJwt9bwLEKWlB60o1qqZVtlZHq8WYEkJ37mZUz7z1A28989Yn3jn34s-DzqkHutnw7mjwoYs4mH3E3unRHPqIHZqQ4Wrx_x2_AWUEvPE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Giraud, Dorian</creator><creator>Pomportes, Laura</creator><creator>Nicol, Caroline</creator><creator>Bertin, Denis</creator><creator>Gardarein, Jean-Laurent</creator><creator>Hays, Arnaud</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0267-8571</orcidid><orcidid>https://orcid.org/0000-0003-1141-4156</orcidid><orcidid>https://orcid.org/0000-0003-2349-2565</orcidid><orcidid>https://orcid.org/0000-0002-5871-2284</orcidid><orcidid>https://orcid.org/0000-0002-2166-1225</orcidid><orcidid>https://orcid.org/0000-0002-1679-0807</orcidid></search><sort><creationdate>2024</creationdate><title>Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming</title><author>Giraud, Dorian ; Pomportes, Laura ; Nicol, Caroline ; Bertin, Denis ; Gardarein, Jean-Laurent ; Hays, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3662-56ac5dadc9d5d7f303b7444b96da02af2fa1d02c49cee475ce374ea0243d94303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cardiocirculatory system</topic><topic>cold-water immersion</topic><topic>core temperature</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>metabolic kinetics</topic><topic>muscle oxygenation</topic><topic>oxygen uptake</topic><topic>Research Paper</topic><topic>Thermoregulation</topic><topic>Tissues and Organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giraud, Dorian</creatorcontrib><creatorcontrib>Pomportes, Laura</creatorcontrib><creatorcontrib>Nicol, Caroline</creatorcontrib><creatorcontrib>Bertin, Denis</creatorcontrib><creatorcontrib>Gardarein, Jean-Laurent</creatorcontrib><creatorcontrib>Hays, Arnaud</creatorcontrib><collection>Taylor & Francis Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Temperature (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giraud, Dorian</au><au>Pomportes, Laura</au><au>Nicol, Caroline</au><au>Bertin, Denis</au><au>Gardarein, Jean-Laurent</au><au>Hays, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming</atitle><jtitle>Temperature (Austin)</jtitle><addtitle>Temperature (Austin)</addtitle><date>2024</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>137</spage><epage>156</epage><pages>137-156</pages><issn>2332-8940</issn><issn>2332-8959</issn><eissn>2332-8959</eissn><abstract>Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higher
$\dot{{\rm V}}$
V
˙
O
2
in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min
−1
.kg
−1
) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min
−1
) (p < 0.001). Only after CWI, R3 showed a progressive decrease in vastus and gastrocnemius medialis O
2
saturation, significant after 34 minutes (p < 0.001). As blood flow did not differ from the AMB protocol, this indicated local thermogenesis in the immersed part of the body. After CWI, a lower gastrointestinal temperature on resumption of cycling compared to AMB (36.31(0.45) vs. 37.30(0.49) °C, p < 0.001) indicated incomplete muscle thermogenesis. In conclusion, the rewarming period after CWI was non-linear and metabolically costly. Immersion and rewarming should be considered as a continuum rather than separate events.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>38846524</pmid><doi>10.1080/23328940.2024.2303332</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0267-8571</orcidid><orcidid>https://orcid.org/0000-0003-1141-4156</orcidid><orcidid>https://orcid.org/0000-0003-2349-2565</orcidid><orcidid>https://orcid.org/0000-0002-5871-2284</orcidid><orcidid>https://orcid.org/0000-0002-2166-1225</orcidid><orcidid>https://orcid.org/0000-0002-1679-0807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2332-8940 |
ispartof | Temperature (Austin), 2024, Vol.11 (2), p.137-156 |
issn | 2332-8940 2332-8959 2332-8959 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11152100 |
source | PubMed |
subjects | cardiocirculatory system cold-water immersion core temperature Human health and pathology Life Sciences metabolic kinetics muscle oxygenation oxygen uptake Research Paper Thermoregulation Tissues and Organs |
title | Mechanism involved of post-exercise cold water immersion: Blood redistribution and increase in energy expenditure during rewarming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20involved%20of%20post-exercise%20cold%20water%20immersion:%20Blood%20redistribution%20and%20increase%20in%20energy%20expenditure%20during%20rewarming&rft.jtitle=Temperature%20(Austin)&rft.au=Giraud,%20Dorian&rft.date=2024&rft.volume=11&rft.issue=2&rft.spage=137&rft.epage=156&rft.pages=137-156&rft.issn=2332-8940&rft.eissn=2332-8959&rft_id=info:doi/10.1080/23328940.2024.2303332&rft_dat=%3Cproquest_pubme%3E3065979605%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065979605&rft_id=info:pmid/38846524&rfr_iscdi=true |