Trapped O2 and the origin of voltage fade in layered Li-rich cathodes

Oxygen redox cathodes, such as Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 , deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2024-06, Vol.23 (6), p.818-825
Hauptverfasser: Marie, John-Joseph, House, Robert A., Rees, Gregory J., Robertson, Alex W., Jenkins, Max, Chen, Jun, Agrestini, Stefano, Garcia-Fernandez, Mirian, Zhou, Ke-Jin, Bruce, Peter G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 6
container_start_page 818
container_title Nature materials
container_volume 23
creator Marie, John-Joseph
House, Robert A.
Rees, Gregory J.
Robertson, Alex W.
Jenkins, Max
Chen, Jun
Agrestini, Stefano
Garcia-Fernandez, Mirian
Zhou, Ke-Jin
Bruce, Peter G.
description Oxygen redox cathodes, such as Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 , deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O 2− ions forms O 2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O 2− on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O 2− /O 2 redox process and O 2 loss. The closed voids that trap O 2 grow on cycling, rendering more of the trapped O 2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O 2 . Our findings implicate the thermodynamic driving force to form O 2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes. Oxygen redox cathodes deliver higher energy densities than those based on transition metal redox but commonly exhibit voltage fade on extended cycling. The loss of O-redox capacity and voltage fade is shown to arise from a reduction in O 2− /O 2 redox process reversibility and O 2 loss.
doi_str_mv 10.1038/s41563-024-01833-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11150160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064393047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-77c83efb16338bf3f8f9871942484ada5e9a6a8697101c004002ce85f5cea00b3</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVpaR7tH-hK0E03k96r12hWpYS0CRiySddC1lzZE8YjRxoH4l9ftTYNzSIrCd3vHM7VYewTwgWCtF-LQm1kA0I1gFbKZv-GnaJqTaOMgbfHO6IQJ-yslHsAgVqb9-xEWiU6LeCUXd1lv91Sz28F91PP5zXxlIfVMPEU-WMaZ78iHn1PvD6N_olyhRdDk4ew5sHP69RT-cDeRT8W-ng8z9mvH1d3l9fN4vbnzeX3RROUFnPTtsFKiks0UtpllNHGzrbYKaGs8r3X1HnjrelaBAwAqiYOZHXUgTzAUp6zbwff7W65oT7QNGc_um0eNj4_ueQH9_9kGtZulR4dImpAA9Xhy9Ehp4cdldlthhJoHP1EaVec6KQSbf1dVdHPL9D7tMtT3c9JMEp2ElRbKXGgQk6lZIr_0iC4PzW5Q02u1uT-1uT2VSQPolLhaUX52foV1W8KCZLL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064393047</pqid></control><display><type>article</type><title>Trapped O2 and the origin of voltage fade in layered Li-rich cathodes</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Marie, John-Joseph ; House, Robert A. ; Rees, Gregory J. ; Robertson, Alex W. ; Jenkins, Max ; Chen, Jun ; Agrestini, Stefano ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Bruce, Peter G.</creator><creatorcontrib>Marie, John-Joseph ; House, Robert A. ; Rees, Gregory J. ; Robertson, Alex W. ; Jenkins, Max ; Chen, Jun ; Agrestini, Stefano ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Bruce, Peter G.</creatorcontrib><description>Oxygen redox cathodes, such as Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 , deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O 2− ions forms O 2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O 2− on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O 2− /O 2 redox process and O 2 loss. The closed voids that trap O 2 grow on cycling, rendering more of the trapped O 2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O 2 . Our findings implicate the thermodynamic driving force to form O 2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes. Oxygen redox cathodes deliver higher energy densities than those based on transition metal redox but commonly exhibit voltage fade on extended cycling. The loss of O-redox capacity and voltage fade is shown to arise from a reduction in O 2− /O 2 redox process reversibility and O 2 loss.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-024-01833-z</identifier><identifier>PMID: 38429520</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/638/263/915 ; 639/638/298 ; Biomaterials ; Cathodes ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Discharge ; Electric potential ; Materials Science ; Microscopy ; Nanotechnology ; NMR ; Nuclear magnetic resonance ; Optical and Electronic Materials ; Oxidation ; Oxygen ; Transition metals ; Voids ; Voltage</subject><ispartof>Nature materials, 2024-06, Vol.23 (6), p.818-825</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-77c83efb16338bf3f8f9871942484ada5e9a6a8697101c004002ce85f5cea00b3</citedby><cites>FETCH-LOGICAL-c452t-77c83efb16338bf3f8f9871942484ada5e9a6a8697101c004002ce85f5cea00b3</cites><orcidid>0000-0001-6748-3084 ; 0000-0001-9616-6299 ; 0000-0001-9293-0595 ; 0000-0002-9521-6482 ; 0000-0003-3004-199X ; 0000-0002-3625-880X ; 0000-0002-7514-1516 ; 0000-0002-6982-9066 ; 0000-0002-7415-477X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-024-01833-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-024-01833-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marie, John-Joseph</creatorcontrib><creatorcontrib>House, Robert A.</creatorcontrib><creatorcontrib>Rees, Gregory J.</creatorcontrib><creatorcontrib>Robertson, Alex W.</creatorcontrib><creatorcontrib>Jenkins, Max</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Agrestini, Stefano</creatorcontrib><creatorcontrib>Garcia-Fernandez, Mirian</creatorcontrib><creatorcontrib>Zhou, Ke-Jin</creatorcontrib><creatorcontrib>Bruce, Peter G.</creatorcontrib><title>Trapped O2 and the origin of voltage fade in layered Li-rich cathodes</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Oxygen redox cathodes, such as Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 , deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O 2− ions forms O 2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O 2− on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O 2− /O 2 redox process and O 2 loss. The closed voids that trap O 2 grow on cycling, rendering more of the trapped O 2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O 2 . Our findings implicate the thermodynamic driving force to form O 2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes. Oxygen redox cathodes deliver higher energy densities than those based on transition metal redox but commonly exhibit voltage fade on extended cycling. The loss of O-redox capacity and voltage fade is shown to arise from a reduction in O 2− /O 2 redox process reversibility and O 2 loss.</description><subject>639/301/299/891</subject><subject>639/638/263/915</subject><subject>639/638/298</subject><subject>Biomaterials</subject><subject>Cathodes</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Transition metals</subject><subject>Voids</subject><subject>Voltage</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtrGzEUhUVpaR7tH-hK0E03k96r12hWpYS0CRiySddC1lzZE8YjRxoH4l9ftTYNzSIrCd3vHM7VYewTwgWCtF-LQm1kA0I1gFbKZv-GnaJqTaOMgbfHO6IQJ-yslHsAgVqb9-xEWiU6LeCUXd1lv91Sz28F91PP5zXxlIfVMPEU-WMaZ78iHn1PvD6N_olyhRdDk4ew5sHP69RT-cDeRT8W-ng8z9mvH1d3l9fN4vbnzeX3RROUFnPTtsFKiks0UtpllNHGzrbYKaGs8r3X1HnjrelaBAwAqiYOZHXUgTzAUp6zbwff7W65oT7QNGc_um0eNj4_ueQH9_9kGtZulR4dImpAA9Xhy9Ehp4cdldlthhJoHP1EaVec6KQSbf1dVdHPL9D7tMtT3c9JMEp2ElRbKXGgQk6lZIr_0iC4PzW5Q02u1uT-1uT2VSQPolLhaUX52foV1W8KCZLL</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Marie, John-Joseph</creator><creator>House, Robert A.</creator><creator>Rees, Gregory J.</creator><creator>Robertson, Alex W.</creator><creator>Jenkins, Max</creator><creator>Chen, Jun</creator><creator>Agrestini, Stefano</creator><creator>Garcia-Fernandez, Mirian</creator><creator>Zhou, Ke-Jin</creator><creator>Bruce, Peter G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6748-3084</orcidid><orcidid>https://orcid.org/0000-0001-9616-6299</orcidid><orcidid>https://orcid.org/0000-0001-9293-0595</orcidid><orcidid>https://orcid.org/0000-0002-9521-6482</orcidid><orcidid>https://orcid.org/0000-0003-3004-199X</orcidid><orcidid>https://orcid.org/0000-0002-3625-880X</orcidid><orcidid>https://orcid.org/0000-0002-7514-1516</orcidid><orcidid>https://orcid.org/0000-0002-6982-9066</orcidid><orcidid>https://orcid.org/0000-0002-7415-477X</orcidid></search><sort><creationdate>20240601</creationdate><title>Trapped O2 and the origin of voltage fade in layered Li-rich cathodes</title><author>Marie, John-Joseph ; House, Robert A. ; Rees, Gregory J. ; Robertson, Alex W. ; Jenkins, Max ; Chen, Jun ; Agrestini, Stefano ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Bruce, Peter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-77c83efb16338bf3f8f9871942484ada5e9a6a8697101c004002ce85f5cea00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/299/891</topic><topic>639/638/263/915</topic><topic>639/638/298</topic><topic>Biomaterials</topic><topic>Cathodes</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Transition metals</topic><topic>Voids</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marie, John-Joseph</creatorcontrib><creatorcontrib>House, Robert A.</creatorcontrib><creatorcontrib>Rees, Gregory J.</creatorcontrib><creatorcontrib>Robertson, Alex W.</creatorcontrib><creatorcontrib>Jenkins, Max</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Agrestini, Stefano</creatorcontrib><creatorcontrib>Garcia-Fernandez, Mirian</creatorcontrib><creatorcontrib>Zhou, Ke-Jin</creatorcontrib><creatorcontrib>Bruce, Peter G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marie, John-Joseph</au><au>House, Robert A.</au><au>Rees, Gregory J.</au><au>Robertson, Alex W.</au><au>Jenkins, Max</au><au>Chen, Jun</au><au>Agrestini, Stefano</au><au>Garcia-Fernandez, Mirian</au><au>Zhou, Ke-Jin</au><au>Bruce, Peter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trapped O2 and the origin of voltage fade in layered Li-rich cathodes</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>818</spage><epage>825</epage><pages>818-825</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Oxygen redox cathodes, such as Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 , deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O 2− ions forms O 2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O 2− on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O 2− /O 2 redox process and O 2 loss. The closed voids that trap O 2 grow on cycling, rendering more of the trapped O 2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O 2 . Our findings implicate the thermodynamic driving force to form O 2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes. Oxygen redox cathodes deliver higher energy densities than those based on transition metal redox but commonly exhibit voltage fade on extended cycling. The loss of O-redox capacity and voltage fade is shown to arise from a reduction in O 2− /O 2 redox process reversibility and O 2 loss.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38429520</pmid><doi>10.1038/s41563-024-01833-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6748-3084</orcidid><orcidid>https://orcid.org/0000-0001-9616-6299</orcidid><orcidid>https://orcid.org/0000-0001-9293-0595</orcidid><orcidid>https://orcid.org/0000-0002-9521-6482</orcidid><orcidid>https://orcid.org/0000-0003-3004-199X</orcidid><orcidid>https://orcid.org/0000-0002-3625-880X</orcidid><orcidid>https://orcid.org/0000-0002-7514-1516</orcidid><orcidid>https://orcid.org/0000-0002-6982-9066</orcidid><orcidid>https://orcid.org/0000-0002-7415-477X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2024-06, Vol.23 (6), p.818-825
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11150160
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/301/299/891
639/638/263/915
639/638/298
Biomaterials
Cathodes
Chemistry and Materials Science
Condensed Matter Physics
Cycles
Discharge
Electric potential
Materials Science
Microscopy
Nanotechnology
NMR
Nuclear magnetic resonance
Optical and Electronic Materials
Oxidation
Oxygen
Transition metals
Voids
Voltage
title Trapped O2 and the origin of voltage fade in layered Li-rich cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trapped%20O2%20and%20the%20origin%20of%20voltage%20fade%20in%20layered%20Li-rich%20cathodes&rft.jtitle=Nature%20materials&rft.au=Marie,%20John-Joseph&rft.date=2024-06-01&rft.volume=23&rft.issue=6&rft.spage=818&rft.epage=825&rft.pages=818-825&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-024-01833-z&rft_dat=%3Cproquest_pubme%3E3064393047%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064393047&rft_id=info:pmid/38429520&rfr_iscdi=true