Trapped O2 and the origin of voltage fade in layered Li-rich cathodes
Oxygen redox cathodes, such as Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 , deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the fir...
Gespeichert in:
Veröffentlicht in: | Nature materials 2024-06, Vol.23 (6), p.818-825 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 825 |
---|---|
container_issue | 6 |
container_start_page | 818 |
container_title | Nature materials |
container_volume | 23 |
creator | Marie, John-Joseph House, Robert A. Rees, Gregory J. Robertson, Alex W. Jenkins, Max Chen, Jun Agrestini, Stefano Garcia-Fernandez, Mirian Zhou, Ke-Jin Bruce, Peter G. |
description | Oxygen redox cathodes, such as Li
1.2
Ni
0.13
Co
0.13
Mn
0.54
O
2
, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O
2−
ions forms O
2
molecules trapped in nano-sized voids within the structure, which can be fully reduced to O
2−
on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O
2−
/O
2
redox process and O
2
loss. The closed voids that trap O
2
grow on cycling, rendering more of the trapped O
2
electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O
2
. Our findings implicate the thermodynamic driving force to form O
2
as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.
Oxygen redox cathodes deliver higher energy densities than those based on transition metal redox but commonly exhibit voltage fade on extended cycling. The loss of O-redox capacity and voltage fade is shown to arise from a reduction in O
2−
/O
2
redox process reversibility and O
2
loss. |
doi_str_mv | 10.1038/s41563-024-01833-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11150160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064393047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-77c83efb16338bf3f8f9871942484ada5e9a6a8697101c004002ce85f5cea00b3</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVpaR7tH-hK0E03k96r12hWpYS0CRiySddC1lzZE8YjRxoH4l9ftTYNzSIrCd3vHM7VYewTwgWCtF-LQm1kA0I1gFbKZv-GnaJqTaOMgbfHO6IQJ-yslHsAgVqb9-xEWiU6LeCUXd1lv91Sz28F91PP5zXxlIfVMPEU-WMaZ78iHn1PvD6N_olyhRdDk4ew5sHP69RT-cDeRT8W-ng8z9mvH1d3l9fN4vbnzeX3RROUFnPTtsFKiks0UtpllNHGzrbYKaGs8r3X1HnjrelaBAwAqiYOZHXUgTzAUp6zbwff7W65oT7QNGc_um0eNj4_ueQH9_9kGtZulR4dImpAA9Xhy9Ehp4cdldlthhJoHP1EaVec6KQSbf1dVdHPL9D7tMtT3c9JMEp2ElRbKXGgQk6lZIr_0iC4PzW5Q02u1uT-1uT2VSQPolLhaUX52foV1W8KCZLL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064393047</pqid></control><display><type>article</type><title>Trapped O2 and the origin of voltage fade in layered Li-rich cathodes</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Marie, John-Joseph ; House, Robert A. ; Rees, Gregory J. ; Robertson, Alex W. ; Jenkins, Max ; Chen, Jun ; Agrestini, Stefano ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Bruce, Peter G.</creator><creatorcontrib>Marie, John-Joseph ; House, Robert A. ; Rees, Gregory J. ; Robertson, Alex W. ; Jenkins, Max ; Chen, Jun ; Agrestini, Stefano ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Bruce, Peter G.</creatorcontrib><description>Oxygen redox cathodes, such as Li
1.2
Ni
0.13
Co
0.13
Mn
0.54
O
2
, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O
2−
ions forms O
2
molecules trapped in nano-sized voids within the structure, which can be fully reduced to O
2−
on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O
2−
/O
2
redox process and O
2
loss. The closed voids that trap O
2
grow on cycling, rendering more of the trapped O
2
electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O
2
. Our findings implicate the thermodynamic driving force to form O
2
as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.
Oxygen redox cathodes deliver higher energy densities than those based on transition metal redox but commonly exhibit voltage fade on extended cycling. The loss of O-redox capacity and voltage fade is shown to arise from a reduction in O
2−
/O
2
redox process reversibility and O
2
loss.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-024-01833-z</identifier><identifier>PMID: 38429520</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/638/263/915 ; 639/638/298 ; Biomaterials ; Cathodes ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Discharge ; Electric potential ; Materials Science ; Microscopy ; Nanotechnology ; NMR ; Nuclear magnetic resonance ; Optical and Electronic Materials ; Oxidation ; Oxygen ; Transition metals ; Voids ; Voltage</subject><ispartof>Nature materials, 2024-06, Vol.23 (6), p.818-825</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-77c83efb16338bf3f8f9871942484ada5e9a6a8697101c004002ce85f5cea00b3</citedby><cites>FETCH-LOGICAL-c452t-77c83efb16338bf3f8f9871942484ada5e9a6a8697101c004002ce85f5cea00b3</cites><orcidid>0000-0001-6748-3084 ; 0000-0001-9616-6299 ; 0000-0001-9293-0595 ; 0000-0002-9521-6482 ; 0000-0003-3004-199X ; 0000-0002-3625-880X ; 0000-0002-7514-1516 ; 0000-0002-6982-9066 ; 0000-0002-7415-477X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-024-01833-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-024-01833-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marie, John-Joseph</creatorcontrib><creatorcontrib>House, Robert A.</creatorcontrib><creatorcontrib>Rees, Gregory J.</creatorcontrib><creatorcontrib>Robertson, Alex W.</creatorcontrib><creatorcontrib>Jenkins, Max</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Agrestini, Stefano</creatorcontrib><creatorcontrib>Garcia-Fernandez, Mirian</creatorcontrib><creatorcontrib>Zhou, Ke-Jin</creatorcontrib><creatorcontrib>Bruce, Peter G.</creatorcontrib><title>Trapped O2 and the origin of voltage fade in layered Li-rich cathodes</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Oxygen redox cathodes, such as Li
1.2
Ni
0.13
Co
0.13
Mn
0.54
O
2
, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O
2−
ions forms O
2
molecules trapped in nano-sized voids within the structure, which can be fully reduced to O
2−
on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O
2−
/O
2
redox process and O
2
loss. The closed voids that trap O
2
grow on cycling, rendering more of the trapped O
2
electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O
2
. Our findings implicate the thermodynamic driving force to form O
2
as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.
Oxygen redox cathodes deliver higher energy densities than those based on transition metal redox but commonly exhibit voltage fade on extended cycling. The loss of O-redox capacity and voltage fade is shown to arise from a reduction in O
2−
/O
2
redox process reversibility and O
2
loss.</description><subject>639/301/299/891</subject><subject>639/638/263/915</subject><subject>639/638/298</subject><subject>Biomaterials</subject><subject>Cathodes</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Transition metals</subject><subject>Voids</subject><subject>Voltage</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtrGzEUhUVpaR7tH-hK0E03k96r12hWpYS0CRiySddC1lzZE8YjRxoH4l9ftTYNzSIrCd3vHM7VYewTwgWCtF-LQm1kA0I1gFbKZv-GnaJqTaOMgbfHO6IQJ-yslHsAgVqb9-xEWiU6LeCUXd1lv91Sz28F91PP5zXxlIfVMPEU-WMaZ78iHn1PvD6N_olyhRdDk4ew5sHP69RT-cDeRT8W-ng8z9mvH1d3l9fN4vbnzeX3RROUFnPTtsFKiks0UtpllNHGzrbYKaGs8r3X1HnjrelaBAwAqiYOZHXUgTzAUp6zbwff7W65oT7QNGc_um0eNj4_ueQH9_9kGtZulR4dImpAA9Xhy9Ehp4cdldlthhJoHP1EaVec6KQSbf1dVdHPL9D7tMtT3c9JMEp2ElRbKXGgQk6lZIr_0iC4PzW5Q02u1uT-1uT2VSQPolLhaUX52foV1W8KCZLL</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Marie, John-Joseph</creator><creator>House, Robert A.</creator><creator>Rees, Gregory J.</creator><creator>Robertson, Alex W.</creator><creator>Jenkins, Max</creator><creator>Chen, Jun</creator><creator>Agrestini, Stefano</creator><creator>Garcia-Fernandez, Mirian</creator><creator>Zhou, Ke-Jin</creator><creator>Bruce, Peter G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6748-3084</orcidid><orcidid>https://orcid.org/0000-0001-9616-6299</orcidid><orcidid>https://orcid.org/0000-0001-9293-0595</orcidid><orcidid>https://orcid.org/0000-0002-9521-6482</orcidid><orcidid>https://orcid.org/0000-0003-3004-199X</orcidid><orcidid>https://orcid.org/0000-0002-3625-880X</orcidid><orcidid>https://orcid.org/0000-0002-7514-1516</orcidid><orcidid>https://orcid.org/0000-0002-6982-9066</orcidid><orcidid>https://orcid.org/0000-0002-7415-477X</orcidid></search><sort><creationdate>20240601</creationdate><title>Trapped O2 and the origin of voltage fade in layered Li-rich cathodes</title><author>Marie, John-Joseph ; House, Robert A. ; Rees, Gregory J. ; Robertson, Alex W. ; Jenkins, Max ; Chen, Jun ; Agrestini, Stefano ; Garcia-Fernandez, Mirian ; Zhou, Ke-Jin ; Bruce, Peter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-77c83efb16338bf3f8f9871942484ada5e9a6a8697101c004002ce85f5cea00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/299/891</topic><topic>639/638/263/915</topic><topic>639/638/298</topic><topic>Biomaterials</topic><topic>Cathodes</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Transition metals</topic><topic>Voids</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marie, John-Joseph</creatorcontrib><creatorcontrib>House, Robert A.</creatorcontrib><creatorcontrib>Rees, Gregory J.</creatorcontrib><creatorcontrib>Robertson, Alex W.</creatorcontrib><creatorcontrib>Jenkins, Max</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Agrestini, Stefano</creatorcontrib><creatorcontrib>Garcia-Fernandez, Mirian</creatorcontrib><creatorcontrib>Zhou, Ke-Jin</creatorcontrib><creatorcontrib>Bruce, Peter G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marie, John-Joseph</au><au>House, Robert A.</au><au>Rees, Gregory J.</au><au>Robertson, Alex W.</au><au>Jenkins, Max</au><au>Chen, Jun</au><au>Agrestini, Stefano</au><au>Garcia-Fernandez, Mirian</au><au>Zhou, Ke-Jin</au><au>Bruce, Peter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trapped O2 and the origin of voltage fade in layered Li-rich cathodes</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>23</volume><issue>6</issue><spage>818</spage><epage>825</epage><pages>818-825</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Oxygen redox cathodes, such as Li
1.2
Ni
0.13
Co
0.13
Mn
0.54
O
2
, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O
2−
ions forms O
2
molecules trapped in nano-sized voids within the structure, which can be fully reduced to O
2−
on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O
2−
/O
2
redox process and O
2
loss. The closed voids that trap O
2
grow on cycling, rendering more of the trapped O
2
electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O
2
. Our findings implicate the thermodynamic driving force to form O
2
as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.
Oxygen redox cathodes deliver higher energy densities than those based on transition metal redox but commonly exhibit voltage fade on extended cycling. The loss of O-redox capacity and voltage fade is shown to arise from a reduction in O
2−
/O
2
redox process reversibility and O
2
loss.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38429520</pmid><doi>10.1038/s41563-024-01833-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6748-3084</orcidid><orcidid>https://orcid.org/0000-0001-9616-6299</orcidid><orcidid>https://orcid.org/0000-0001-9293-0595</orcidid><orcidid>https://orcid.org/0000-0002-9521-6482</orcidid><orcidid>https://orcid.org/0000-0003-3004-199X</orcidid><orcidid>https://orcid.org/0000-0002-3625-880X</orcidid><orcidid>https://orcid.org/0000-0002-7514-1516</orcidid><orcidid>https://orcid.org/0000-0002-6982-9066</orcidid><orcidid>https://orcid.org/0000-0002-7415-477X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2024-06, Vol.23 (6), p.818-825 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11150160 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/301/299/891 639/638/263/915 639/638/298 Biomaterials Cathodes Chemistry and Materials Science Condensed Matter Physics Cycles Discharge Electric potential Materials Science Microscopy Nanotechnology NMR Nuclear magnetic resonance Optical and Electronic Materials Oxidation Oxygen Transition metals Voids Voltage |
title | Trapped O2 and the origin of voltage fade in layered Li-rich cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trapped%20O2%20and%20the%20origin%20of%20voltage%20fade%20in%20layered%20Li-rich%20cathodes&rft.jtitle=Nature%20materials&rft.au=Marie,%20John-Joseph&rft.date=2024-06-01&rft.volume=23&rft.issue=6&rft.spage=818&rft.epage=825&rft.pages=818-825&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-024-01833-z&rft_dat=%3Cproquest_pubme%3E3064393047%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064393047&rft_id=info:pmid/38429520&rfr_iscdi=true |