Spatial–temporal distribution characteristics of pulmonary tuberculosis in eastern China from 2011 to 2021
China is still among the 30 high-burden tuberculosis (TB) countries in the world. Few studies have described the spatial epidemiological characteristics of pulmonary TB (PTB) in Jiangsu Province. The registered incidence data of PTB patients in 95 counties of Jiangsu Province from 2011 to 2021 were...
Gespeichert in:
Veröffentlicht in: | Epidemiology and infection 2024-05, Vol.152, p.e84-e84, Article e84 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e84 |
---|---|
container_issue | |
container_start_page | e84 |
container_title | Epidemiology and infection |
container_volume | 152 |
creator | Chen, Ke Cheng, Liang Yu, Hao Zhou, Yong Zhu, Limei Li, Zhongqi Li, Tenglong Martinez, Leonardo Liu, Qiao Wang, Bei |
description | China is still among the 30 high-burden tuberculosis (TB) countries in the world. Few studies have described the spatial epidemiological characteristics of pulmonary TB (PTB) in Jiangsu Province. The registered incidence data of PTB patients in 95 counties of Jiangsu Province from 2011 to 2021 were collected from the Tuberculosis Management Information System. Three-dimensional spatial trends, spatial autocorrelation, and spatial–temporal scan analysis were conducted to explore the spatial clustering pattern of PTB. From 2011 to 2021, a total of 347,495 newly diagnosed PTB cases were registered. The registered incidence rate of PTB decreased from 49.78/100,000 in 2011 to 26.49/100,000 in 2021, exhibiting a steady downward trend (χ2 = 414.22, P 0 (P |
doi_str_mv | 10.1017/S0950268824000785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11149027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0950268824000785</cupid><sourcerecordid>3061586421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-40c3cee0b5a59ac2b7ead3ef7991fc964edf3d625b03c3f6d27dc287fca59de93</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS1ERYfCA7BBlth0E-rfJF4hNOJPqtRFYW05znXHVWIH26nEjnfgDfskeNShQBGrK_l89_geHYReUPKaEtqdXRIlCWv7nglCSNfLR2hDRasaIYh6jDZ7udnrx-hpzteVUazvnqBj3ndCCso2aLpcTPFmuv3-o8C8xGQmPPpckh_W4mPAdmeSsQVSffQ24-jwsk5zDCZ9w2UdINl1itln7AMGkysZ8Hbng8EuxRkzQikusU5Gn6EjZ6YMzw_zBH15_-7z9mNzfvHh0_bteWMFE6URxHILQAZppDKWDR2YkYPrlKLOqlbA6PjYMjkQbrlrR9aNtgZztvIjKH6C3tz5Lusww2ghlJpLL8nP9Wodjdd_K8Hv9FW80ZRSoQjrqsPpwSHFryvkomefLUyTCRDXrDmRUlRUyIq-eoBexzWFmq9SLZV9KxitFL2jbIo5J3D311Ci92Xqf8qsOy__jHG_8au9CvCDqZmH5Mcr-P33_21_AviHrEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061586421</pqid></control><display><type>article</type><title>Spatial–temporal distribution characteristics of pulmonary tuberculosis in eastern China from 2011 to 2021</title><source>MEDLINE</source><source>Cambridge Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Chen, Ke ; Cheng, Liang ; Yu, Hao ; Zhou, Yong ; Zhu, Limei ; Li, Zhongqi ; Li, Tenglong ; Martinez, Leonardo ; Liu, Qiao ; Wang, Bei</creator><creatorcontrib>Chen, Ke ; Cheng, Liang ; Yu, Hao ; Zhou, Yong ; Zhu, Limei ; Li, Zhongqi ; Li, Tenglong ; Martinez, Leonardo ; Liu, Qiao ; Wang, Bei</creatorcontrib><description>China is still among the 30 high-burden tuberculosis (TB) countries in the world. Few studies have described the spatial epidemiological characteristics of pulmonary TB (PTB) in Jiangsu Province. The registered incidence data of PTB patients in 95 counties of Jiangsu Province from 2011 to 2021 were collected from the Tuberculosis Management Information System. Three-dimensional spatial trends, spatial autocorrelation, and spatial–temporal scan analysis were conducted to explore the spatial clustering pattern of PTB. From 2011 to 2021, a total of 347,495 newly diagnosed PTB cases were registered. The registered incidence rate of PTB decreased from 49.78/100,000 in 2011 to 26.49/100,000 in 2021, exhibiting a steady downward trend (χ2 = 414.22, P < 0.001). The average annual registered incidence rate of PTB was higher in the central and northern regions. Moran’s I indices of the registered incidence of PTB were all >0 (P< 0.05) except in 2016, indicating a positive spatial correlation overall. Local autocorrelation analysis showed that ‘high–high’ clusters were mainly distributed in northern Jiangsu, and ‘low–low’ clusters were mainly concentrated in southern Jiangsu. The results of this study assist in identifying settings and locations of high TB risk and inform policy-making for PTB control and prevention.</description><identifier>ISSN: 0950-2688</identifier><identifier>EISSN: 1469-4409</identifier><identifier>DOI: 10.1017/S0950268824000785</identifier><identifier>PMID: 38745412</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Autocorrelation ; Child ; Child, Preschool ; China - epidemiology ; Clustering ; Clusters ; Economic development ; Epidemics ; Epidemiology ; Female ; GDP ; Gross Domestic Product ; Humans ; Incidence ; Infant ; Infant, Newborn ; Infectious diseases ; Information management ; Information systems ; Male ; Management information systems ; Middle Aged ; Original Paper ; Software ; Spatial analysis ; Spatial distribution ; Spatio-Temporal Analysis ; Temporal distribution ; Tuberculosis ; Tuberculosis, Pulmonary - epidemiology ; Young Adult</subject><ispartof>Epidemiology and infection, 2024-05, Vol.152, p.e84-e84, Article e84</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c424t-40c3cee0b5a59ac2b7ead3ef7991fc964edf3d625b03c3f6d27dc287fca59de93</cites><orcidid>0000-0002-5243-1254 ; 0000-0002-3572-133X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149027/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0950268824000785/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,23318,27924,27925,53791,53793,55804</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38745412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Cheng, Liang</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zhu, Limei</creatorcontrib><creatorcontrib>Li, Zhongqi</creatorcontrib><creatorcontrib>Li, Tenglong</creatorcontrib><creatorcontrib>Martinez, Leonardo</creatorcontrib><creatorcontrib>Liu, Qiao</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><title>Spatial–temporal distribution characteristics of pulmonary tuberculosis in eastern China from 2011 to 2021</title><title>Epidemiology and infection</title><addtitle>Epidemiol. Infect</addtitle><description>China is still among the 30 high-burden tuberculosis (TB) countries in the world. Few studies have described the spatial epidemiological characteristics of pulmonary TB (PTB) in Jiangsu Province. The registered incidence data of PTB patients in 95 counties of Jiangsu Province from 2011 to 2021 were collected from the Tuberculosis Management Information System. Three-dimensional spatial trends, spatial autocorrelation, and spatial–temporal scan analysis were conducted to explore the spatial clustering pattern of PTB. From 2011 to 2021, a total of 347,495 newly diagnosed PTB cases were registered. The registered incidence rate of PTB decreased from 49.78/100,000 in 2011 to 26.49/100,000 in 2021, exhibiting a steady downward trend (χ2 = 414.22, P < 0.001). The average annual registered incidence rate of PTB was higher in the central and northern regions. Moran’s I indices of the registered incidence of PTB were all >0 (P< 0.05) except in 2016, indicating a positive spatial correlation overall. Local autocorrelation analysis showed that ‘high–high’ clusters were mainly distributed in northern Jiangsu, and ‘low–low’ clusters were mainly concentrated in southern Jiangsu. The results of this study assist in identifying settings and locations of high TB risk and inform policy-making for PTB control and prevention.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Autocorrelation</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>China - epidemiology</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Economic development</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Female</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Humans</subject><subject>Incidence</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infectious diseases</subject><subject>Information management</subject><subject>Information systems</subject><subject>Male</subject><subject>Management information systems</subject><subject>Middle Aged</subject><subject>Original Paper</subject><subject>Software</subject><subject>Spatial analysis</subject><subject>Spatial distribution</subject><subject>Spatio-Temporal Analysis</subject><subject>Temporal distribution</subject><subject>Tuberculosis</subject><subject>Tuberculosis, Pulmonary - epidemiology</subject><subject>Young Adult</subject><issn>0950-2688</issn><issn>1469-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1DAUhS1ERYfCA7BBlth0E-rfJF4hNOJPqtRFYW05znXHVWIH26nEjnfgDfskeNShQBGrK_l89_geHYReUPKaEtqdXRIlCWv7nglCSNfLR2hDRasaIYh6jDZ7udnrx-hpzteVUazvnqBj3ndCCso2aLpcTPFmuv3-o8C8xGQmPPpckh_W4mPAdmeSsQVSffQ24-jwsk5zDCZ9w2UdINl1itln7AMGkysZ8Hbng8EuxRkzQikusU5Gn6EjZ6YMzw_zBH15_-7z9mNzfvHh0_bteWMFE6URxHILQAZppDKWDR2YkYPrlKLOqlbA6PjYMjkQbrlrR9aNtgZztvIjKH6C3tz5Lusww2ghlJpLL8nP9Wodjdd_K8Hv9FW80ZRSoQjrqsPpwSHFryvkomefLUyTCRDXrDmRUlRUyIq-eoBexzWFmq9SLZV9KxitFL2jbIo5J3D311Ci92Xqf8qsOy__jHG_8au9CvCDqZmH5Mcr-P33_21_AviHrEg</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Chen, Ke</creator><creator>Cheng, Liang</creator><creator>Yu, Hao</creator><creator>Zhou, Yong</creator><creator>Zhu, Limei</creator><creator>Li, Zhongqi</creator><creator>Li, Tenglong</creator><creator>Martinez, Leonardo</creator><creator>Liu, Qiao</creator><creator>Wang, Bei</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5243-1254</orcidid><orcidid>https://orcid.org/0000-0002-3572-133X</orcidid></search><sort><creationdate>20240515</creationdate><title>Spatial–temporal distribution characteristics of pulmonary tuberculosis in eastern China from 2011 to 2021</title><author>Chen, Ke ; Cheng, Liang ; Yu, Hao ; Zhou, Yong ; Zhu, Limei ; Li, Zhongqi ; Li, Tenglong ; Martinez, Leonardo ; Liu, Qiao ; Wang, Bei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-40c3cee0b5a59ac2b7ead3ef7991fc964edf3d625b03c3f6d27dc287fca59de93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Autocorrelation</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>China - epidemiology</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Economic development</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Female</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Humans</topic><topic>Incidence</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infectious diseases</topic><topic>Information management</topic><topic>Information systems</topic><topic>Male</topic><topic>Management information systems</topic><topic>Middle Aged</topic><topic>Original Paper</topic><topic>Software</topic><topic>Spatial analysis</topic><topic>Spatial distribution</topic><topic>Spatio-Temporal Analysis</topic><topic>Temporal distribution</topic><topic>Tuberculosis</topic><topic>Tuberculosis, Pulmonary - epidemiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Cheng, Liang</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zhu, Limei</creatorcontrib><creatorcontrib>Li, Zhongqi</creatorcontrib><creatorcontrib>Li, Tenglong</creatorcontrib><creatorcontrib>Martinez, Leonardo</creatorcontrib><creatorcontrib>Liu, Qiao</creatorcontrib><creatorcontrib>Wang, Bei</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epidemiology and infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ke</au><au>Cheng, Liang</au><au>Yu, Hao</au><au>Zhou, Yong</au><au>Zhu, Limei</au><au>Li, Zhongqi</au><au>Li, Tenglong</au><au>Martinez, Leonardo</au><au>Liu, Qiao</au><au>Wang, Bei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial–temporal distribution characteristics of pulmonary tuberculosis in eastern China from 2011 to 2021</atitle><jtitle>Epidemiology and infection</jtitle><addtitle>Epidemiol. Infect</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>152</volume><spage>e84</spage><epage>e84</epage><pages>e84-e84</pages><artnum>e84</artnum><issn>0950-2688</issn><eissn>1469-4409</eissn><abstract>China is still among the 30 high-burden tuberculosis (TB) countries in the world. Few studies have described the spatial epidemiological characteristics of pulmonary TB (PTB) in Jiangsu Province. The registered incidence data of PTB patients in 95 counties of Jiangsu Province from 2011 to 2021 were collected from the Tuberculosis Management Information System. Three-dimensional spatial trends, spatial autocorrelation, and spatial–temporal scan analysis were conducted to explore the spatial clustering pattern of PTB. From 2011 to 2021, a total of 347,495 newly diagnosed PTB cases were registered. The registered incidence rate of PTB decreased from 49.78/100,000 in 2011 to 26.49/100,000 in 2021, exhibiting a steady downward trend (χ2 = 414.22, P < 0.001). The average annual registered incidence rate of PTB was higher in the central and northern regions. Moran’s I indices of the registered incidence of PTB were all >0 (P< 0.05) except in 2016, indicating a positive spatial correlation overall. Local autocorrelation analysis showed that ‘high–high’ clusters were mainly distributed in northern Jiangsu, and ‘low–low’ clusters were mainly concentrated in southern Jiangsu. The results of this study assist in identifying settings and locations of high TB risk and inform policy-making for PTB control and prevention.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>38745412</pmid><doi>10.1017/S0950268824000785</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5243-1254</orcidid><orcidid>https://orcid.org/0000-0002-3572-133X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-2688 |
ispartof | Epidemiology and infection, 2024-05, Vol.152, p.e84-e84, Article e84 |
issn | 0950-2688 1469-4409 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11149027 |
source | MEDLINE; Cambridge Journals Open Access; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Adolescent Adult Aged Aged, 80 and over Autocorrelation Child Child, Preschool China - epidemiology Clustering Clusters Economic development Epidemics Epidemiology Female GDP Gross Domestic Product Humans Incidence Infant Infant, Newborn Infectious diseases Information management Information systems Male Management information systems Middle Aged Original Paper Software Spatial analysis Spatial distribution Spatio-Temporal Analysis Temporal distribution Tuberculosis Tuberculosis, Pulmonary - epidemiology Young Adult |
title | Spatial–temporal distribution characteristics of pulmonary tuberculosis in eastern China from 2011 to 2021 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%E2%80%93temporal%20distribution%20characteristics%20of%20pulmonary%20tuberculosis%20in%20eastern%20China%20from%202011%20to%202021&rft.jtitle=Epidemiology%20and%20infection&rft.au=Chen,%20Ke&rft.date=2024-05-15&rft.volume=152&rft.spage=e84&rft.epage=e84&rft.pages=e84-e84&rft.artnum=e84&rft.issn=0950-2688&rft.eissn=1469-4409&rft_id=info:doi/10.1017/S0950268824000785&rft_dat=%3Cproquest_pubme%3E3061586421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061586421&rft_id=info:pmid/38745412&rft_cupid=10_1017_S0950268824000785&rfr_iscdi=true |