RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci

Background As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2024-06, Vol.13
Hauptverfasser: Shrestha, Anish M S, Gonzales, Mark Edward M, Ong, Phoebe Clare L, Larmande, Pierre, Lee, Hyun-Sook, Jeung, Ji-Ung, Kohli, Ajay, Chebotarov, Dmytro, Mauleon, Ramil P, Lee, Jae-Sung, McNally, Kenneth L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Gigascience
container_volume 13
creator Shrestha, Anish M S
Gonzales, Mark Edward M
Ong, Phoebe Clare L
Larmande, Pierre
Lee, Hyun-Sook
Jeung, Ji-Ung
Kohli, Ajay
Chebotarov, Dmytro
Mauleon, Ramil P
Lee, Jae-Sung
McNally, Kenneth L
description Background As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. Results We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. Conclusions RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.
doi_str_mv 10.1093/gigascience/giae013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11148593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giae013</oup_id><sourcerecordid>3131615959</sourcerecordid><originalsourceid>FETCH-LOGICAL-h343t-bab44a1c18fba3614857db6fe1ed7cfa40966aa8dba9814c2f30cd800c8e8e353</originalsourceid><addsrcrecordid>eNpdkt1u1DAQhSMEotXSJ0BClrgBadPacX683KBVBS3SSvwVwV00cSaJq8QOtrO0L8kz4bDLaqlvPJr5fM6RNVH0nNFzRlf8olUtOKlQSww1IGX8UXSa0LSIE1b8eHxUn0Rnzt3ScIpCiII_jU64EDxJ8-w0-v1FSfykemjeECCjcT6--r7-evH5ZkNqcF1lwNbEG6K0x9aCRzKCblGbQcklkQbvRovOKaOXxGI79eCNvV8SHNWBMtqb3rShO4LvfkEoQAdVvPPxoLTSbZBvjB3AB53ZbbRmq2okzaTl3IM-EE61nXdzEkNsiE1CSPdXaY5MeiPVs-hJA73Ds_29iL69f3dzeR1vPl59uFxv4o6n3McVVGkKTDLRVMBzloqsqKu8QYZ1IRtI6SrPAURdwUqwVCYNp7IWlEqBAnnGF9Hbne44VQPWErW30JejVQPY-9KAKv-faNWVrdmWjM1mKx4UXu8Uugfvrtebcu7RNE8TxrMtC-yrvZs1Pyd0vhyUk9j3oNFMruQ0TzPBaUYD-vIBemsmG_4vUIyznGWr4L6IXhzHP_j_24sAnO8AM42HKaPlvHvl0e6V-93jfwDurNKr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131615959</pqid></control><display><type>article</type><title>RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Shrestha, Anish M S ; Gonzales, Mark Edward M ; Ong, Phoebe Clare L ; Larmande, Pierre ; Lee, Hyun-Sook ; Jeung, Ji-Ung ; Kohli, Ajay ; Chebotarov, Dmytro ; Mauleon, Ramil P ; Lee, Jae-Sung ; McNally, Kenneth L</creator><creatorcontrib>Shrestha, Anish M S ; Gonzales, Mark Edward M ; Ong, Phoebe Clare L ; Larmande, Pierre ; Lee, Hyun-Sook ; Jeung, Ji-Ung ; Kohli, Ajay ; Chebotarov, Dmytro ; Mauleon, Ramil P ; Lee, Jae-Sung ; McNally, Kenneth L</creatorcontrib><description>Background As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. Results We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. Conclusions RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giae013</identifier><identifier>PMID: 38832465</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Applications programs ; Bioinformatics ; Biological effects ; Chromosome Mapping ; Collating ; Computational Biology - methods ; Data Mining ; Databases, Genetic ; Drought ; Epigenetics ; Epigenomics - methods ; Gene loci ; Genes ; Genetics ; Genome, Plant ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomic analysis ; Genomics ; Genomics - methods ; Life Sciences ; Nucleotides ; Ontology ; Oryza - genetics ; Plant breeding ; Plants genetics ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Rice ; Single-nucleotide polymorphism ; Software ; Source code ; Technical Note ; Vegetal Biology</subject><ispartof>Gigascience, 2024-06, Vol.13</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of GigaScience. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of GigaScience.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1959-6209 ; 0000-0001-8512-144X ; 0009-0004-7982-7314 ; 0000-0002-2923-9790 ; 0000-0001-5050-3157 ; 0000-0002-3644-4901 ; 0000-0002-7325-5798 ; 0000-0002-9192-9709 ; 0000-0002-9613-5537 ; 0000-0003-1351-9453 ; 0000-0002-7578-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148593/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148593/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38832465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04642135$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shrestha, Anish M S</creatorcontrib><creatorcontrib>Gonzales, Mark Edward M</creatorcontrib><creatorcontrib>Ong, Phoebe Clare L</creatorcontrib><creatorcontrib>Larmande, Pierre</creatorcontrib><creatorcontrib>Lee, Hyun-Sook</creatorcontrib><creatorcontrib>Jeung, Ji-Ung</creatorcontrib><creatorcontrib>Kohli, Ajay</creatorcontrib><creatorcontrib>Chebotarov, Dmytro</creatorcontrib><creatorcontrib>Mauleon, Ramil P</creatorcontrib><creatorcontrib>Lee, Jae-Sung</creatorcontrib><creatorcontrib>McNally, Kenneth L</creatorcontrib><title>RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Background As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. Results We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. Conclusions RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.</description><subject>Applications programs</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Chromosome Mapping</subject><subject>Collating</subject><subject>Computational Biology - methods</subject><subject>Data Mining</subject><subject>Databases, Genetic</subject><subject>Drought</subject><subject>Epigenetics</subject><subject>Epigenomics - methods</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genome, Plant</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Life Sciences</subject><subject>Nucleotides</subject><subject>Ontology</subject><subject>Oryza - genetics</subject><subject>Plant breeding</subject><subject>Plants genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>Rice</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Source code</subject><subject>Technical Note</subject><subject>Vegetal Biology</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNpdkt1u1DAQhSMEotXSJ0BClrgBadPacX683KBVBS3SSvwVwV00cSaJq8QOtrO0L8kz4bDLaqlvPJr5fM6RNVH0nNFzRlf8olUtOKlQSww1IGX8UXSa0LSIE1b8eHxUn0Rnzt3ScIpCiII_jU64EDxJ8-w0-v1FSfykemjeECCjcT6--r7-evH5ZkNqcF1lwNbEG6K0x9aCRzKCblGbQcklkQbvRovOKaOXxGI79eCNvV8SHNWBMtqb3rShO4LvfkEoQAdVvPPxoLTSbZBvjB3AB53ZbbRmq2okzaTl3IM-EE61nXdzEkNsiE1CSPdXaY5MeiPVs-hJA73Ds_29iL69f3dzeR1vPl59uFxv4o6n3McVVGkKTDLRVMBzloqsqKu8QYZ1IRtI6SrPAURdwUqwVCYNp7IWlEqBAnnGF9Hbne44VQPWErW30JejVQPY-9KAKv-faNWVrdmWjM1mKx4UXu8Uugfvrtebcu7RNE8TxrMtC-yrvZs1Pyd0vhyUk9j3oNFMruQ0TzPBaUYD-vIBemsmG_4vUIyznGWr4L6IXhzHP_j_24sAnO8AM42HKaPlvHvl0e6V-93jfwDurNKr</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Shrestha, Anish M S</creator><creator>Gonzales, Mark Edward M</creator><creator>Ong, Phoebe Clare L</creator><creator>Larmande, Pierre</creator><creator>Lee, Hyun-Sook</creator><creator>Jeung, Ji-Ung</creator><creator>Kohli, Ajay</creator><creator>Chebotarov, Dmytro</creator><creator>Mauleon, Ramil P</creator><creator>Lee, Jae-Sung</creator><creator>McNally, Kenneth L</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1959-6209</orcidid><orcidid>https://orcid.org/0000-0001-8512-144X</orcidid><orcidid>https://orcid.org/0009-0004-7982-7314</orcidid><orcidid>https://orcid.org/0000-0002-2923-9790</orcidid><orcidid>https://orcid.org/0000-0001-5050-3157</orcidid><orcidid>https://orcid.org/0000-0002-3644-4901</orcidid><orcidid>https://orcid.org/0000-0002-7325-5798</orcidid><orcidid>https://orcid.org/0000-0002-9192-9709</orcidid><orcidid>https://orcid.org/0000-0002-9613-5537</orcidid><orcidid>https://orcid.org/0000-0003-1351-9453</orcidid><orcidid>https://orcid.org/0000-0002-7578-2081</orcidid></search><sort><creationdate>20240604</creationdate><title>RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci</title><author>Shrestha, Anish M S ; Gonzales, Mark Edward M ; Ong, Phoebe Clare L ; Larmande, Pierre ; Lee, Hyun-Sook ; Jeung, Ji-Ung ; Kohli, Ajay ; Chebotarov, Dmytro ; Mauleon, Ramil P ; Lee, Jae-Sung ; McNally, Kenneth L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h343t-bab44a1c18fba3614857db6fe1ed7cfa40966aa8dba9814c2f30cd800c8e8e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications programs</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Chromosome Mapping</topic><topic>Collating</topic><topic>Computational Biology - methods</topic><topic>Data Mining</topic><topic>Databases, Genetic</topic><topic>Drought</topic><topic>Epigenetics</topic><topic>Epigenomics - methods</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genome, Plant</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Life Sciences</topic><topic>Nucleotides</topic><topic>Ontology</topic><topic>Oryza - genetics</topic><topic>Plant breeding</topic><topic>Plants genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>Rice</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Source code</topic><topic>Technical Note</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shrestha, Anish M S</creatorcontrib><creatorcontrib>Gonzales, Mark Edward M</creatorcontrib><creatorcontrib>Ong, Phoebe Clare L</creatorcontrib><creatorcontrib>Larmande, Pierre</creatorcontrib><creatorcontrib>Lee, Hyun-Sook</creatorcontrib><creatorcontrib>Jeung, Ji-Ung</creatorcontrib><creatorcontrib>Kohli, Ajay</creatorcontrib><creatorcontrib>Chebotarov, Dmytro</creatorcontrib><creatorcontrib>Mauleon, Ramil P</creatorcontrib><creatorcontrib>Lee, Jae-Sung</creatorcontrib><creatorcontrib>McNally, Kenneth L</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrestha, Anish M S</au><au>Gonzales, Mark Edward M</au><au>Ong, Phoebe Clare L</au><au>Larmande, Pierre</au><au>Lee, Hyun-Sook</au><au>Jeung, Ji-Ung</au><au>Kohli, Ajay</au><au>Chebotarov, Dmytro</au><au>Mauleon, Ramil P</au><au>Lee, Jae-Sung</au><au>McNally, Kenneth L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2024-06-04</date><risdate>2024</risdate><volume>13</volume><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Background As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. Results We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. Conclusions RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>38832465</pmid><doi>10.1093/gigascience/giae013</doi><orcidid>https://orcid.org/0000-0002-1959-6209</orcidid><orcidid>https://orcid.org/0000-0001-8512-144X</orcidid><orcidid>https://orcid.org/0009-0004-7982-7314</orcidid><orcidid>https://orcid.org/0000-0002-2923-9790</orcidid><orcidid>https://orcid.org/0000-0001-5050-3157</orcidid><orcidid>https://orcid.org/0000-0002-3644-4901</orcidid><orcidid>https://orcid.org/0000-0002-7325-5798</orcidid><orcidid>https://orcid.org/0000-0002-9192-9709</orcidid><orcidid>https://orcid.org/0000-0002-9613-5537</orcidid><orcidid>https://orcid.org/0000-0003-1351-9453</orcidid><orcidid>https://orcid.org/0000-0002-7578-2081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-217X
ispartof Gigascience, 2024-06, Vol.13
issn 2047-217X
2047-217X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11148593
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Applications programs
Bioinformatics
Biological effects
Chromosome Mapping
Collating
Computational Biology - methods
Data Mining
Databases, Genetic
Drought
Epigenetics
Epigenomics - methods
Gene loci
Genes
Genetics
Genome, Plant
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genomic analysis
Genomics
Genomics - methods
Life Sciences
Nucleotides
Ontology
Oryza - genetics
Plant breeding
Plants genetics
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Rice
Single-nucleotide polymorphism
Software
Source code
Technical Note
Vegetal Biology
title RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RicePilaf:%20a%20post-GWAS/QTL%20dashboard%20to%20integrate%20pangenomic,%20coexpression,%20regulatory,%20epigenomic,%20ontology,%20pathway,%20and%20text-mining%20information%20to%20provide%20functional%20insights%20into%20rice%20QTLs%20and%20GWAS%20loci&rft.jtitle=Gigascience&rft.au=Shrestha,%20Anish%20M%20S&rft.date=2024-06-04&rft.volume=13&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giae013&rft_dat=%3Cproquest_pubme%3E3131615959%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131615959&rft_id=info:pmid/38832465&rft_oup_id=10.1093/gigascience/giae013&rfr_iscdi=true