Evidence for Two Subpopulations of Cerebrospinal Fluid-Contacting Neurons with Opposite GABAergic Signaling in Adult Mouse Spinal Cord
Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturat...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2024-05, Vol.44 (22), p.e2289222024 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | e2289222024 |
container_title | The Journal of neuroscience |
container_volume | 44 |
creator | Riondel, Priscille Jurčić, Nina Mounien, Lourdes Ibrahim, Stéphanie Ramirez-Franco, Jorge Stefanovic, Sonia Trouslard, Jérôme Wanaverbecq, Nicolas Seddik, Riad |
description | Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl
) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na
-K
-Cl
cotransporter 1 (NKCC1) allowing intracellular Cl
accumulation. However, we did not find expression of the K
-Cl
cotransporter 2 (KCC2) responsible for Cl
efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl
extrusion capacity in CSF-cNs under high Cl
load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl
concentration, we found that the activation of ionotropic GABA
receptors (GABA
-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABA
receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K
currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABA
-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit. |
doi_str_mv | 10.1523/JNEUROSCI.2289-22.2024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11140688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063792971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-88d298c1da5ff807f0e0ee08ec0cb98ac4f5e5b1944d9f02b06c995adebe9c553</originalsourceid><addsrcrecordid>eNpdkt9u0zAUxi0EYmXwCpMlbuAi5dhxEvsKlaj7g8oq0e3acpyT1lMaZ07SiRfguUnUUcFubNnn9322jz9CLhjMWcLjL99vl_c_15v8Zs65VBHncw5cvCKzsTouBbDXZAY8gygVmTgj77ruAQAyYNlbchbLVIo4FTPye3lwJTYWaeUDvXvydDMUrW-H2vTONx31Fc0xYBF817rG1PSyHlwZ5b7pje1ds6W3OISJfHL9jq7b1neuR3q1-LbAsHWWbtx21E2ka-iiHOqe_vBDh3RzNMx9KN-TN5WpO_zwPJ-T-8vlXX4drdZXN_liFdkY0j6SsuRKWlaapKokZBUgIIJEC7ZQ0lhRJZgUTAlRqgp4AalVKjElFqhsksTn5OvRtx2KPZYWmz6YWrfB7U34pb1x-v9K43Z66w-aMSYglXJ0-Hx02L3QXS9WetoDkWSxlOzARvbT82nBPw7Y9XrvOot1bRocO6BjECrjXLEJ_fgCffBDGNszUWmcKa6yiUqPlB2_owtYnW7AQE-50Kdc6CkX46CnXIzCi3_ffZL9DUL8B7qntuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063792971</pqid></control><display><type>article</type><title>Evidence for Two Subpopulations of Cerebrospinal Fluid-Contacting Neurons with Opposite GABAergic Signaling in Adult Mouse Spinal Cord</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Riondel, Priscille ; Jurčić, Nina ; Mounien, Lourdes ; Ibrahim, Stéphanie ; Ramirez-Franco, Jorge ; Stefanovic, Sonia ; Trouslard, Jérôme ; Wanaverbecq, Nicolas ; Seddik, Riad</creator><creatorcontrib>Riondel, Priscille ; Jurčić, Nina ; Mounien, Lourdes ; Ibrahim, Stéphanie ; Ramirez-Franco, Jorge ; Stefanovic, Sonia ; Trouslard, Jérôme ; Wanaverbecq, Nicolas ; Seddik, Riad</creatorcontrib><description>Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl
) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na
-K
-Cl
cotransporter 1 (NKCC1) allowing intracellular Cl
accumulation. However, we did not find expression of the K
-Cl
cotransporter 2 (KCC2) responsible for Cl
efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl
extrusion capacity in CSF-cNs under high Cl
load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl
concentration, we found that the activation of ionotropic GABA
receptors (GABA
-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABA
receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K
currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABA
-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2289-22.2024</identifier><identifier>PMID: 38684364</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Baclofen ; Bipolar cells ; Bumetanide ; Calcium ; Calcium (intracellular) ; Calcium channels ; Calcium channels (voltage-gated) ; Cerebrospinal fluid ; Cerebrospinal Fluid - metabolism ; Cerebrospinal Fluid - physiology ; Channel gating ; Chloride transport ; Chlorides - cerebrospinal fluid ; Chlorides - metabolism ; Chlorides - pharmacology ; Depolarization ; Efflux ; Evolutionary conservation ; Female ; GABAergic Neurons - metabolism ; GABAergic Neurons - physiology ; gamma-Aminobutyric Acid - metabolism ; Homeostasis ; Hybridization ; Intracellular ; K Cl- Cotransporters ; Life Sciences ; Male ; Maturation ; Metabotropic receptors ; Mice ; Mice, Inbred C57BL ; Neurobiology ; Neurons ; Neurons - metabolism ; Neurons - physiology ; Neurons and Cognition ; Potassium channels (inwardly-rectifying) ; Potassium currents ; Potassium-chloride cotransporter ; Receptors ; Receptors, GABA-A - metabolism ; Signal Transduction - physiology ; Solute Carrier Family 12, Member 2 - metabolism ; Spinal cord ; Spinal Cord - metabolism ; Subpopulations ; Symporters - metabolism ; Vertebrates ; γ-Aminobutyric acid A receptors ; γ-Aminobutyric acid B receptors</subject><ispartof>The Journal of neuroscience, 2024-05, Vol.44 (22), p.e2289222024</ispartof><rights>Copyright © 2024 the authors.</rights><rights>Copyright Society for Neuroscience May 29, 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2024 the authors 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-88d298c1da5ff807f0e0ee08ec0cb98ac4f5e5b1944d9f02b06c995adebe9c553</cites><orcidid>0000-0002-9221-5783 ; 0000-0003-4202-2534 ; 0000-0002-4235-7281 ; 0009-0001-2003-9020 ; 0000-0002-2426-6140 ; 0000-0002-5076-9753 ; 0000-0001-5486-2771 ; 0000-0001-5052-4767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140688/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140688/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38684364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04573881$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Riondel, Priscille</creatorcontrib><creatorcontrib>Jurčić, Nina</creatorcontrib><creatorcontrib>Mounien, Lourdes</creatorcontrib><creatorcontrib>Ibrahim, Stéphanie</creatorcontrib><creatorcontrib>Ramirez-Franco, Jorge</creatorcontrib><creatorcontrib>Stefanovic, Sonia</creatorcontrib><creatorcontrib>Trouslard, Jérôme</creatorcontrib><creatorcontrib>Wanaverbecq, Nicolas</creatorcontrib><creatorcontrib>Seddik, Riad</creatorcontrib><title>Evidence for Two Subpopulations of Cerebrospinal Fluid-Contacting Neurons with Opposite GABAergic Signaling in Adult Mouse Spinal Cord</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl
) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na
-K
-Cl
cotransporter 1 (NKCC1) allowing intracellular Cl
accumulation. However, we did not find expression of the K
-Cl
cotransporter 2 (KCC2) responsible for Cl
efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl
extrusion capacity in CSF-cNs under high Cl
load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl
concentration, we found that the activation of ionotropic GABA
receptors (GABA
-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABA
receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K
currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABA
-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.</description><subject>Animals</subject><subject>Baclofen</subject><subject>Bipolar cells</subject><subject>Bumetanide</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium channels (voltage-gated)</subject><subject>Cerebrospinal fluid</subject><subject>Cerebrospinal Fluid - metabolism</subject><subject>Cerebrospinal Fluid - physiology</subject><subject>Channel gating</subject><subject>Chloride transport</subject><subject>Chlorides - cerebrospinal fluid</subject><subject>Chlorides - metabolism</subject><subject>Chlorides - pharmacology</subject><subject>Depolarization</subject><subject>Efflux</subject><subject>Evolutionary conservation</subject><subject>Female</subject><subject>GABAergic Neurons - metabolism</subject><subject>GABAergic Neurons - physiology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Homeostasis</subject><subject>Hybridization</subject><subject>Intracellular</subject><subject>K Cl- Cotransporters</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Maturation</subject><subject>Metabotropic receptors</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Potassium currents</subject><subject>Potassium-chloride cotransporter</subject><subject>Receptors</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Solute Carrier Family 12, Member 2 - metabolism</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Subpopulations</subject><subject>Symporters - metabolism</subject><subject>Vertebrates</subject><subject>γ-Aminobutyric acid A receptors</subject><subject>γ-Aminobutyric acid B receptors</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkt9u0zAUxi0EYmXwCpMlbuAi5dhxEvsKlaj7g8oq0e3acpyT1lMaZ07SiRfguUnUUcFubNnn9322jz9CLhjMWcLjL99vl_c_15v8Zs65VBHncw5cvCKzsTouBbDXZAY8gygVmTgj77ruAQAyYNlbchbLVIo4FTPye3lwJTYWaeUDvXvydDMUrW-H2vTONx31Fc0xYBF817rG1PSyHlwZ5b7pje1ds6W3OISJfHL9jq7b1neuR3q1-LbAsHWWbtx21E2ka-iiHOqe_vBDh3RzNMx9KN-TN5WpO_zwPJ-T-8vlXX4drdZXN_liFdkY0j6SsuRKWlaapKokZBUgIIJEC7ZQ0lhRJZgUTAlRqgp4AalVKjElFqhsksTn5OvRtx2KPZYWmz6YWrfB7U34pb1x-v9K43Z66w-aMSYglXJ0-Hx02L3QXS9WetoDkWSxlOzARvbT82nBPw7Y9XrvOot1bRocO6BjECrjXLEJ_fgCffBDGNszUWmcKa6yiUqPlB2_owtYnW7AQE-50Kdc6CkX46CnXIzCi3_ffZL9DUL8B7qntuY</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Riondel, Priscille</creator><creator>Jurčić, Nina</creator><creator>Mounien, Lourdes</creator><creator>Ibrahim, Stéphanie</creator><creator>Ramirez-Franco, Jorge</creator><creator>Stefanovic, Sonia</creator><creator>Trouslard, Jérôme</creator><creator>Wanaverbecq, Nicolas</creator><creator>Seddik, Riad</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9221-5783</orcidid><orcidid>https://orcid.org/0000-0003-4202-2534</orcidid><orcidid>https://orcid.org/0000-0002-4235-7281</orcidid><orcidid>https://orcid.org/0009-0001-2003-9020</orcidid><orcidid>https://orcid.org/0000-0002-2426-6140</orcidid><orcidid>https://orcid.org/0000-0002-5076-9753</orcidid><orcidid>https://orcid.org/0000-0001-5486-2771</orcidid><orcidid>https://orcid.org/0000-0001-5052-4767</orcidid></search><sort><creationdate>20240529</creationdate><title>Evidence for Two Subpopulations of Cerebrospinal Fluid-Contacting Neurons with Opposite GABAergic Signaling in Adult Mouse Spinal Cord</title><author>Riondel, Priscille ; Jurčić, Nina ; Mounien, Lourdes ; Ibrahim, Stéphanie ; Ramirez-Franco, Jorge ; Stefanovic, Sonia ; Trouslard, Jérôme ; Wanaverbecq, Nicolas ; Seddik, Riad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-88d298c1da5ff807f0e0ee08ec0cb98ac4f5e5b1944d9f02b06c995adebe9c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Baclofen</topic><topic>Bipolar cells</topic><topic>Bumetanide</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium channels (voltage-gated)</topic><topic>Cerebrospinal fluid</topic><topic>Cerebrospinal Fluid - metabolism</topic><topic>Cerebrospinal Fluid - physiology</topic><topic>Channel gating</topic><topic>Chloride transport</topic><topic>Chlorides - cerebrospinal fluid</topic><topic>Chlorides - metabolism</topic><topic>Chlorides - pharmacology</topic><topic>Depolarization</topic><topic>Efflux</topic><topic>Evolutionary conservation</topic><topic>Female</topic><topic>GABAergic Neurons - metabolism</topic><topic>GABAergic Neurons - physiology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Homeostasis</topic><topic>Hybridization</topic><topic>Intracellular</topic><topic>K Cl- Cotransporters</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Maturation</topic><topic>Metabotropic receptors</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Potassium currents</topic><topic>Potassium-chloride cotransporter</topic><topic>Receptors</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Solute Carrier Family 12, Member 2 - metabolism</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Subpopulations</topic><topic>Symporters - metabolism</topic><topic>Vertebrates</topic><topic>γ-Aminobutyric acid A receptors</topic><topic>γ-Aminobutyric acid B receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riondel, Priscille</creatorcontrib><creatorcontrib>Jurčić, Nina</creatorcontrib><creatorcontrib>Mounien, Lourdes</creatorcontrib><creatorcontrib>Ibrahim, Stéphanie</creatorcontrib><creatorcontrib>Ramirez-Franco, Jorge</creatorcontrib><creatorcontrib>Stefanovic, Sonia</creatorcontrib><creatorcontrib>Trouslard, Jérôme</creatorcontrib><creatorcontrib>Wanaverbecq, Nicolas</creatorcontrib><creatorcontrib>Seddik, Riad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riondel, Priscille</au><au>Jurčić, Nina</au><au>Mounien, Lourdes</au><au>Ibrahim, Stéphanie</au><au>Ramirez-Franco, Jorge</au><au>Stefanovic, Sonia</au><au>Trouslard, Jérôme</au><au>Wanaverbecq, Nicolas</au><au>Seddik, Riad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Two Subpopulations of Cerebrospinal Fluid-Contacting Neurons with Opposite GABAergic Signaling in Adult Mouse Spinal Cord</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2024-05-29</date><risdate>2024</risdate><volume>44</volume><issue>22</issue><spage>e2289222024</spage><pages>e2289222024-</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl
) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na
-K
-Cl
cotransporter 1 (NKCC1) allowing intracellular Cl
accumulation. However, we did not find expression of the K
-Cl
cotransporter 2 (KCC2) responsible for Cl
efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl
extrusion capacity in CSF-cNs under high Cl
load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl
concentration, we found that the activation of ionotropic GABA
receptors (GABA
-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABA
receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K
currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABA
-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>38684364</pmid><doi>10.1523/JNEUROSCI.2289-22.2024</doi><orcidid>https://orcid.org/0000-0002-9221-5783</orcidid><orcidid>https://orcid.org/0000-0003-4202-2534</orcidid><orcidid>https://orcid.org/0000-0002-4235-7281</orcidid><orcidid>https://orcid.org/0009-0001-2003-9020</orcidid><orcidid>https://orcid.org/0000-0002-2426-6140</orcidid><orcidid>https://orcid.org/0000-0002-5076-9753</orcidid><orcidid>https://orcid.org/0000-0001-5486-2771</orcidid><orcidid>https://orcid.org/0000-0001-5052-4767</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2024-05, Vol.44 (22), p.e2289222024 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11140688 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Baclofen Bipolar cells Bumetanide Calcium Calcium (intracellular) Calcium channels Calcium channels (voltage-gated) Cerebrospinal fluid Cerebrospinal Fluid - metabolism Cerebrospinal Fluid - physiology Channel gating Chloride transport Chlorides - cerebrospinal fluid Chlorides - metabolism Chlorides - pharmacology Depolarization Efflux Evolutionary conservation Female GABAergic Neurons - metabolism GABAergic Neurons - physiology gamma-Aminobutyric Acid - metabolism Homeostasis Hybridization Intracellular K Cl- Cotransporters Life Sciences Male Maturation Metabotropic receptors Mice Mice, Inbred C57BL Neurobiology Neurons Neurons - metabolism Neurons - physiology Neurons and Cognition Potassium channels (inwardly-rectifying) Potassium currents Potassium-chloride cotransporter Receptors Receptors, GABA-A - metabolism Signal Transduction - physiology Solute Carrier Family 12, Member 2 - metabolism Spinal cord Spinal Cord - metabolism Subpopulations Symporters - metabolism Vertebrates γ-Aminobutyric acid A receptors γ-Aminobutyric acid B receptors |
title | Evidence for Two Subpopulations of Cerebrospinal Fluid-Contacting Neurons with Opposite GABAergic Signaling in Adult Mouse Spinal Cord |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Two%20Subpopulations%20of%20Cerebrospinal%20Fluid-Contacting%20Neurons%20with%20Opposite%20GABAergic%20Signaling%20in%20Adult%20Mouse%20Spinal%20Cord&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Riondel,%20Priscille&rft.date=2024-05-29&rft.volume=44&rft.issue=22&rft.spage=e2289222024&rft.pages=e2289222024-&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2289-22.2024&rft_dat=%3Cproquest_pubme%3E3063792971%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063792971&rft_id=info:pmid/38684364&rfr_iscdi=true |