On the modeling of mechanotransduction in flow-mediated dilation
In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scala...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2021-08, Vol.120, p.104606-104606, Article 104606 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104606 |
---|---|
container_issue | |
container_start_page | 104606 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 120 |
creator | Sidnawi, Bchara Chen, Zhen Sehgal, Chandra Santhanam, Sridhar Wu, Qianhong |
description | In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery's outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery's physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases. |
doi_str_mv | 10.1016/j.jmbbm.2021.104606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11139487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616121002873</els_id><sourcerecordid>2534613351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-68165925c80f9b9a56c97d4a64bf9861e5ebdc51c97269a0120ef7a6d4d305193</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMofv8CQXr00jXTJml6EBXxCwQveg5pMt3N0ibadBX_vVl3Fb14mmHmnXdeHkKOgE6AgjidT-Z90_STghaQJkxQsUF2QVYypyDpZuorDrkAATtkL8Y5pYJSKbfJTskoYwWHXXLx6LNxhlkfLHbOT7PQZj2amfZhHLSPdmFGF3zmfNZ24T3v0To9os2s6_Ryc0C2Wt1FPFzXffJ8c_10dZc_PN7eX10-5CYFG3MhQfC64EbStm5qzYWpK8u0YE1bSwHIsbGGQ5oWotYUCoptpYVltqQc6nKfnK98XxZNCmHQp3ydehlcr4cPFbRTfzfezdQ0vCkAKGsmq-RwsnYYwusC46h6Fw12nfYYFlEVvGQCypJDkpYrqRlCjAO2P3-AqiV8NVdf8NUSvlrBT1fHvyP-3HzTToKzlQATqDeHg4rGoTeJ6YBmVDa4fx98AmAvlqE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534613351</pqid></control><display><type>article</type><title>On the modeling of mechanotransduction in flow-mediated dilation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sidnawi, Bchara ; Chen, Zhen ; Sehgal, Chandra ; Santhanam, Sridhar ; Wu, Qianhong</creator><creatorcontrib>Sidnawi, Bchara ; Chen, Zhen ; Sehgal, Chandra ; Santhanam, Sridhar ; Wu, Qianhong</creatorcontrib><description>In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery's outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery's physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases.</description><identifier>ISSN: 1751-6161</identifier><identifier>ISSN: 1878-0180</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2021.104606</identifier><identifier>PMID: 34044251</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Brachial Artery ; Dilatation ; Endothelium, Vascular ; Flow mediated dilation ; Fluid-structure interaction ; Mechanotransduction ; Mechanotransduction, Cellular ; Stress, Mechanical ; Vasodilation ; Wall shear stress</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2021-08, Vol.120, p.104606-104606, Article 104606</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-68165925c80f9b9a56c97d4a64bf9861e5ebdc51c97269a0120ef7a6d4d305193</citedby><cites>FETCH-LOGICAL-c460t-68165925c80f9b9a56c97d4a64bf9861e5ebdc51c97269a0120ef7a6d4d305193</cites><orcidid>0000-0002-8811-1930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616121002873$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34044251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sidnawi, Bchara</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Sehgal, Chandra</creatorcontrib><creatorcontrib>Santhanam, Sridhar</creatorcontrib><creatorcontrib>Wu, Qianhong</creatorcontrib><title>On the modeling of mechanotransduction in flow-mediated dilation</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery's outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery's physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases.</description><subject>Brachial Artery</subject><subject>Dilatation</subject><subject>Endothelium, Vascular</subject><subject>Flow mediated dilation</subject><subject>Fluid-structure interaction</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular</subject><subject>Stress, Mechanical</subject><subject>Vasodilation</subject><subject>Wall shear stress</subject><issn>1751-6161</issn><issn>1878-0180</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMofv8CQXr00jXTJml6EBXxCwQveg5pMt3N0ibadBX_vVl3Fb14mmHmnXdeHkKOgE6AgjidT-Z90_STghaQJkxQsUF2QVYypyDpZuorDrkAATtkL8Y5pYJSKbfJTskoYwWHXXLx6LNxhlkfLHbOT7PQZj2amfZhHLSPdmFGF3zmfNZ24T3v0To9os2s6_Ryc0C2Wt1FPFzXffJ8c_10dZc_PN7eX10-5CYFG3MhQfC64EbStm5qzYWpK8u0YE1bSwHIsbGGQ5oWotYUCoptpYVltqQc6nKfnK98XxZNCmHQp3ydehlcr4cPFbRTfzfezdQ0vCkAKGsmq-RwsnYYwusC46h6Fw12nfYYFlEVvGQCypJDkpYrqRlCjAO2P3-AqiV8NVdf8NUSvlrBT1fHvyP-3HzTToKzlQATqDeHg4rGoTeJ6YBmVDa4fx98AmAvlqE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Sidnawi, Bchara</creator><creator>Chen, Zhen</creator><creator>Sehgal, Chandra</creator><creator>Santhanam, Sridhar</creator><creator>Wu, Qianhong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8811-1930</orcidid></search><sort><creationdate>20210801</creationdate><title>On the modeling of mechanotransduction in flow-mediated dilation</title><author>Sidnawi, Bchara ; Chen, Zhen ; Sehgal, Chandra ; Santhanam, Sridhar ; Wu, Qianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-68165925c80f9b9a56c97d4a64bf9861e5ebdc51c97269a0120ef7a6d4d305193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brachial Artery</topic><topic>Dilatation</topic><topic>Endothelium, Vascular</topic><topic>Flow mediated dilation</topic><topic>Fluid-structure interaction</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular</topic><topic>Stress, Mechanical</topic><topic>Vasodilation</topic><topic>Wall shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidnawi, Bchara</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Sehgal, Chandra</creatorcontrib><creatorcontrib>Santhanam, Sridhar</creatorcontrib><creatorcontrib>Wu, Qianhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidnawi, Bchara</au><au>Chen, Zhen</au><au>Sehgal, Chandra</au><au>Santhanam, Sridhar</au><au>Wu, Qianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the modeling of mechanotransduction in flow-mediated dilation</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>120</volume><spage>104606</spage><epage>104606</epage><pages>104606-104606</pages><artnum>104606</artnum><issn>1751-6161</issn><issn>1878-0180</issn><eissn>1878-0180</eissn><abstract>In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery's outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery's physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34044251</pmid><doi>10.1016/j.jmbbm.2021.104606</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8811-1930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2021-08, Vol.120, p.104606-104606, Article 104606 |
issn | 1751-6161 1878-0180 1878-0180 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11139487 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Brachial Artery Dilatation Endothelium, Vascular Flow mediated dilation Fluid-structure interaction Mechanotransduction Mechanotransduction, Cellular Stress, Mechanical Vasodilation Wall shear stress |
title | On the modeling of mechanotransduction in flow-mediated dilation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20modeling%20of%20mechanotransduction%20in%20flow-mediated%20dilation&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Sidnawi,%20Bchara&rft.date=2021-08-01&rft.volume=120&rft.spage=104606&rft.epage=104606&rft.pages=104606-104606&rft.artnum=104606&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2021.104606&rft_dat=%3Cproquest_pubme%3E2534613351%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534613351&rft_id=info:pmid/34044251&rft_els_id=S1751616121002873&rfr_iscdi=true |