On the modeling of mechanotransduction in flow-mediated dilation

In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scala...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2021-08, Vol.120, p.104606-104606, Article 104606
Hauptverfasser: Sidnawi, Bchara, Chen, Zhen, Sehgal, Chandra, Santhanam, Sridhar, Wu, Qianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104606
container_issue
container_start_page 104606
container_title Journal of the mechanical behavior of biomedical materials
container_volume 120
creator Sidnawi, Bchara
Chen, Zhen
Sehgal, Chandra
Santhanam, Sridhar
Wu, Qianhong
description In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery's outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery's physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases.
doi_str_mv 10.1016/j.jmbbm.2021.104606
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11139487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616121002873</els_id><sourcerecordid>2534613351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-68165925c80f9b9a56c97d4a64bf9861e5ebdc51c97269a0120ef7a6d4d305193</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMofv8CQXr00jXTJml6EBXxCwQveg5pMt3N0ibadBX_vVl3Fb14mmHmnXdeHkKOgE6AgjidT-Z90_STghaQJkxQsUF2QVYypyDpZuorDrkAATtkL8Y5pYJSKbfJTskoYwWHXXLx6LNxhlkfLHbOT7PQZj2amfZhHLSPdmFGF3zmfNZ24T3v0To9os2s6_Ryc0C2Wt1FPFzXffJ8c_10dZc_PN7eX10-5CYFG3MhQfC64EbStm5qzYWpK8u0YE1bSwHIsbGGQ5oWotYUCoptpYVltqQc6nKfnK98XxZNCmHQp3ydehlcr4cPFbRTfzfezdQ0vCkAKGsmq-RwsnYYwusC46h6Fw12nfYYFlEVvGQCypJDkpYrqRlCjAO2P3-AqiV8NVdf8NUSvlrBT1fHvyP-3HzTToKzlQATqDeHg4rGoTeJ6YBmVDa4fx98AmAvlqE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534613351</pqid></control><display><type>article</type><title>On the modeling of mechanotransduction in flow-mediated dilation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sidnawi, Bchara ; Chen, Zhen ; Sehgal, Chandra ; Santhanam, Sridhar ; Wu, Qianhong</creator><creatorcontrib>Sidnawi, Bchara ; Chen, Zhen ; Sehgal, Chandra ; Santhanam, Sridhar ; Wu, Qianhong</creatorcontrib><description>In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery's outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery's physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases.</description><identifier>ISSN: 1751-6161</identifier><identifier>ISSN: 1878-0180</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2021.104606</identifier><identifier>PMID: 34044251</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Brachial Artery ; Dilatation ; Endothelium, Vascular ; Flow mediated dilation ; Fluid-structure interaction ; Mechanotransduction ; Mechanotransduction, Cellular ; Stress, Mechanical ; Vasodilation ; Wall shear stress</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2021-08, Vol.120, p.104606-104606, Article 104606</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-68165925c80f9b9a56c97d4a64bf9861e5ebdc51c97269a0120ef7a6d4d305193</citedby><cites>FETCH-LOGICAL-c460t-68165925c80f9b9a56c97d4a64bf9861e5ebdc51c97269a0120ef7a6d4d305193</cites><orcidid>0000-0002-8811-1930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616121002873$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34044251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sidnawi, Bchara</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Sehgal, Chandra</creatorcontrib><creatorcontrib>Santhanam, Sridhar</creatorcontrib><creatorcontrib>Wu, Qianhong</creatorcontrib><title>On the modeling of mechanotransduction in flow-mediated dilation</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery's outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery's physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases.</description><subject>Brachial Artery</subject><subject>Dilatation</subject><subject>Endothelium, Vascular</subject><subject>Flow mediated dilation</subject><subject>Fluid-structure interaction</subject><subject>Mechanotransduction</subject><subject>Mechanotransduction, Cellular</subject><subject>Stress, Mechanical</subject><subject>Vasodilation</subject><subject>Wall shear stress</subject><issn>1751-6161</issn><issn>1878-0180</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMofv8CQXr00jXTJml6EBXxCwQveg5pMt3N0ibadBX_vVl3Fb14mmHmnXdeHkKOgE6AgjidT-Z90_STghaQJkxQsUF2QVYypyDpZuorDrkAATtkL8Y5pYJSKbfJTskoYwWHXXLx6LNxhlkfLHbOT7PQZj2amfZhHLSPdmFGF3zmfNZ24T3v0To9os2s6_Ryc0C2Wt1FPFzXffJ8c_10dZc_PN7eX10-5CYFG3MhQfC64EbStm5qzYWpK8u0YE1bSwHIsbGGQ5oWotYUCoptpYVltqQc6nKfnK98XxZNCmHQp3ydehlcr4cPFbRTfzfezdQ0vCkAKGsmq-RwsnYYwusC46h6Fw12nfYYFlEVvGQCypJDkpYrqRlCjAO2P3-AqiV8NVdf8NUSvlrBT1fHvyP-3HzTToKzlQATqDeHg4rGoTeJ6YBmVDa4fx98AmAvlqE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Sidnawi, Bchara</creator><creator>Chen, Zhen</creator><creator>Sehgal, Chandra</creator><creator>Santhanam, Sridhar</creator><creator>Wu, Qianhong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8811-1930</orcidid></search><sort><creationdate>20210801</creationdate><title>On the modeling of mechanotransduction in flow-mediated dilation</title><author>Sidnawi, Bchara ; Chen, Zhen ; Sehgal, Chandra ; Santhanam, Sridhar ; Wu, Qianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-68165925c80f9b9a56c97d4a64bf9861e5ebdc51c97269a0120ef7a6d4d305193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brachial Artery</topic><topic>Dilatation</topic><topic>Endothelium, Vascular</topic><topic>Flow mediated dilation</topic><topic>Fluid-structure interaction</topic><topic>Mechanotransduction</topic><topic>Mechanotransduction, Cellular</topic><topic>Stress, Mechanical</topic><topic>Vasodilation</topic><topic>Wall shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidnawi, Bchara</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Sehgal, Chandra</creatorcontrib><creatorcontrib>Santhanam, Sridhar</creatorcontrib><creatorcontrib>Wu, Qianhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidnawi, Bchara</au><au>Chen, Zhen</au><au>Sehgal, Chandra</au><au>Santhanam, Sridhar</au><au>Wu, Qianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the modeling of mechanotransduction in flow-mediated dilation</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>120</volume><spage>104606</spage><epage>104606</epage><pages>104606-104606</pages><artnum>104606</artnum><issn>1751-6161</issn><issn>1878-0180</issn><eissn>1878-0180</eissn><abstract>In this paper, we report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery's outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery's physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34044251</pmid><doi>10.1016/j.jmbbm.2021.104606</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8811-1930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2021-08, Vol.120, p.104606-104606, Article 104606
issn 1751-6161
1878-0180
1878-0180
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11139487
source MEDLINE; Elsevier ScienceDirect Journals
subjects Brachial Artery
Dilatation
Endothelium, Vascular
Flow mediated dilation
Fluid-structure interaction
Mechanotransduction
Mechanotransduction, Cellular
Stress, Mechanical
Vasodilation
Wall shear stress
title On the modeling of mechanotransduction in flow-mediated dilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20modeling%20of%20mechanotransduction%20in%20flow-mediated%20dilation&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Sidnawi,%20Bchara&rft.date=2021-08-01&rft.volume=120&rft.spage=104606&rft.epage=104606&rft.pages=104606-104606&rft.artnum=104606&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2021.104606&rft_dat=%3Cproquest_pubme%3E2534613351%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534613351&rft_id=info:pmid/34044251&rft_els_id=S1751616121002873&rfr_iscdi=true