Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models
The ionization potential (IP) is an important parameter providing essential insights into the reactivity of chemical systems. IPs are also crucial for designing, optimizing, and understanding the functionality of modern technological devices. We recently showed that limiting the CC ansatz to the sen...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2024-05, Vol.20 (10), p.4182-4195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4195 |
---|---|
container_issue | 10 |
container_start_page | 4182 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Gałyńska, Marta Boguslawski, Katharina |
description | The ionization potential (IP) is an important parameter providing essential insights into the reactivity of chemical systems. IPs are also crucial for designing, optimizing, and understanding the functionality of modern technological devices. We recently showed that limiting the CC ansatz to the seniority-zero sector proves insufficient in predicting reliable and accurate ionization potentials within an IP equation-of-motion coupled-cluster formalism. Specifically, the absence of dynamical correlation in the seniority-zero pair coupled cluster doubles (pCCD) model led to unacceptably significant errors of approximately 1.5 eV. In this work, we aim to explore the impact of dynamical correlation and the choice of the molecular orbital basis (canonical vs localized) in CC-type methods targeting 230 ionized states in 70 molecules, comprising small organic molecules, medium-sized organic acceptors, and nucleobases. We focus on pCCD-based approaches as well as the conventional IP-EOM-CCD and IP-EOM-CCSD. Their performance is compared to the CCSD(T) or CCSDT equivalent and experimental reference data. Our statistical analysis reveals that all investigated frozen-pair coupled cluster methods exhibit similar performance, with differences in errors typically within chemical accuracy (1 kcal/mol or 0.05 eV). Notably, the effect of the molecular orbital basis, such as canonical Hartree–Fock or natural pCCD-optimized orbitals, on the IPs is marginal if dynamical correlation is accounted for. Our study suggests that triple excitations are crucial in achieving chemical accuracy in IPs when modeling electron detachment processes with pCCD-based methods. |
doi_str_mv | 10.1021/acs.jctc.4c00172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11137826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062727465</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-4ad4e637e8bac38cabcf4cd815a15c328fd5da5f32501e8b8659040a3e535853</originalsourceid><addsrcrecordid>eNp1kTtPwzAUhS0EoqWwM6FILAy0-Jk4E4LwlIpg6G65jtO6JHGwEyT49bj0IUBiulfyd47P1QHgGMERghhdSOVHC9WqEVUQogTvgD5iNB2mMY53tzviPXDg_QJCQigm-6BHeMIwTVEfjK91reaVdK-mnkWPtjafsjW2jl5sq-vWyNJHhbNV1GTZTTSRprRO51Fmu6ZczrLzrXbRk8116Q_BXhEE-mg9B2BydzvJHobj5_vH7Go8lDTG7ZDKnOqYJJpPpSJcyakqqMo5YhIxRTAvcpZLVhDMIAoQj1kKKZREM8I4IwNwubJtummlcxVyOlmKxplwx4ew0ojfL7WZi5l9FwghknAcB4eztYOzb532raiMV7osZa1t5wWBjPGUMZIG9PQPurCdq8N5gYpxghMaLyPBFaWc9d7pYpsGQbGsSoSqxLIqsa4qSE5-XrEVbLoJwPkK-JZuPv3X7wteDKBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062727465</pqid></control><display><type>article</type><title>Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models</title><source>American Chemical Society Journals</source><creator>Gałyńska, Marta ; Boguslawski, Katharina</creator><creatorcontrib>Gałyńska, Marta ; Boguslawski, Katharina</creatorcontrib><description>The ionization potential (IP) is an important parameter providing essential insights into the reactivity of chemical systems. IPs are also crucial for designing, optimizing, and understanding the functionality of modern technological devices. We recently showed that limiting the CC ansatz to the seniority-zero sector proves insufficient in predicting reliable and accurate ionization potentials within an IP equation-of-motion coupled-cluster formalism. Specifically, the absence of dynamical correlation in the seniority-zero pair coupled cluster doubles (pCCD) model led to unacceptably significant errors of approximately 1.5 eV. In this work, we aim to explore the impact of dynamical correlation and the choice of the molecular orbital basis (canonical vs localized) in CC-type methods targeting 230 ionized states in 70 molecules, comprising small organic molecules, medium-sized organic acceptors, and nucleobases. We focus on pCCD-based approaches as well as the conventional IP-EOM-CCD and IP-EOM-CCSD. Their performance is compared to the CCSD(T) or CCSDT equivalent and experimental reference data. Our statistical analysis reveals that all investigated frozen-pair coupled cluster methods exhibit similar performance, with differences in errors typically within chemical accuracy (1 kcal/mol or 0.05 eV). Notably, the effect of the molecular orbital basis, such as canonical Hartree–Fock or natural pCCD-optimized orbitals, on the IPs is marginal if dynamical correlation is accounted for. Our study suggests that triple excitations are crucial in achieving chemical accuracy in IPs when modeling electron detachment processes with pCCD-based methods.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00172</identifier><identifier>PMID: 38752491</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Clusters ; Correlation ; Errors ; Ionization potentials ; Molecular orbitals ; Organic chemistry ; Quantum Electronic Structure ; Statistical analysis</subject><ispartof>Journal of chemical theory and computation, 2024-05, Vol.20 (10), p.4182-4195</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society May 28, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-4ad4e637e8bac38cabcf4cd815a15c328fd5da5f32501e8b8659040a3e535853</citedby><cites>FETCH-LOGICAL-a462t-4ad4e637e8bac38cabcf4cd815a15c328fd5da5f32501e8b8659040a3e535853</cites><orcidid>0000-0001-7793-1151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.4c00172$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00172$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38752491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gałyńska, Marta</creatorcontrib><creatorcontrib>Boguslawski, Katharina</creatorcontrib><title>Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The ionization potential (IP) is an important parameter providing essential insights into the reactivity of chemical systems. IPs are also crucial for designing, optimizing, and understanding the functionality of modern technological devices. We recently showed that limiting the CC ansatz to the seniority-zero sector proves insufficient in predicting reliable and accurate ionization potentials within an IP equation-of-motion coupled-cluster formalism. Specifically, the absence of dynamical correlation in the seniority-zero pair coupled cluster doubles (pCCD) model led to unacceptably significant errors of approximately 1.5 eV. In this work, we aim to explore the impact of dynamical correlation and the choice of the molecular orbital basis (canonical vs localized) in CC-type methods targeting 230 ionized states in 70 molecules, comprising small organic molecules, medium-sized organic acceptors, and nucleobases. We focus on pCCD-based approaches as well as the conventional IP-EOM-CCD and IP-EOM-CCSD. Their performance is compared to the CCSD(T) or CCSDT equivalent and experimental reference data. Our statistical analysis reveals that all investigated frozen-pair coupled cluster methods exhibit similar performance, with differences in errors typically within chemical accuracy (1 kcal/mol or 0.05 eV). Notably, the effect of the molecular orbital basis, such as canonical Hartree–Fock or natural pCCD-optimized orbitals, on the IPs is marginal if dynamical correlation is accounted for. Our study suggests that triple excitations are crucial in achieving chemical accuracy in IPs when modeling electron detachment processes with pCCD-based methods.</description><subject>Accuracy</subject><subject>Clusters</subject><subject>Correlation</subject><subject>Errors</subject><subject>Ionization potentials</subject><subject>Molecular orbitals</subject><subject>Organic chemistry</subject><subject>Quantum Electronic Structure</subject><subject>Statistical analysis</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kTtPwzAUhS0EoqWwM6FILAy0-Jk4E4LwlIpg6G65jtO6JHGwEyT49bj0IUBiulfyd47P1QHgGMERghhdSOVHC9WqEVUQogTvgD5iNB2mMY53tzviPXDg_QJCQigm-6BHeMIwTVEfjK91reaVdK-mnkWPtjafsjW2jl5sq-vWyNJHhbNV1GTZTTSRprRO51Fmu6ZczrLzrXbRk8116Q_BXhEE-mg9B2BydzvJHobj5_vH7Go8lDTG7ZDKnOqYJJpPpSJcyakqqMo5YhIxRTAvcpZLVhDMIAoQj1kKKZREM8I4IwNwubJtummlcxVyOlmKxplwx4ew0ojfL7WZi5l9FwghknAcB4eztYOzb532raiMV7osZa1t5wWBjPGUMZIG9PQPurCdq8N5gYpxghMaLyPBFaWc9d7pYpsGQbGsSoSqxLIqsa4qSE5-XrEVbLoJwPkK-JZuPv3X7wteDKBY</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Gałyńska, Marta</creator><creator>Boguslawski, Katharina</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7793-1151</orcidid></search><sort><creationdate>20240528</creationdate><title>Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models</title><author>Gałyńska, Marta ; Boguslawski, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-4ad4e637e8bac38cabcf4cd815a15c328fd5da5f32501e8b8659040a3e535853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Clusters</topic><topic>Correlation</topic><topic>Errors</topic><topic>Ionization potentials</topic><topic>Molecular orbitals</topic><topic>Organic chemistry</topic><topic>Quantum Electronic Structure</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gałyńska, Marta</creatorcontrib><creatorcontrib>Boguslawski, Katharina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gałyńska, Marta</au><au>Boguslawski, Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-05-28</date><risdate>2024</risdate><volume>20</volume><issue>10</issue><spage>4182</spage><epage>4195</epage><pages>4182-4195</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>The ionization potential (IP) is an important parameter providing essential insights into the reactivity of chemical systems. IPs are also crucial for designing, optimizing, and understanding the functionality of modern technological devices. We recently showed that limiting the CC ansatz to the seniority-zero sector proves insufficient in predicting reliable and accurate ionization potentials within an IP equation-of-motion coupled-cluster formalism. Specifically, the absence of dynamical correlation in the seniority-zero pair coupled cluster doubles (pCCD) model led to unacceptably significant errors of approximately 1.5 eV. In this work, we aim to explore the impact of dynamical correlation and the choice of the molecular orbital basis (canonical vs localized) in CC-type methods targeting 230 ionized states in 70 molecules, comprising small organic molecules, medium-sized organic acceptors, and nucleobases. We focus on pCCD-based approaches as well as the conventional IP-EOM-CCD and IP-EOM-CCSD. Their performance is compared to the CCSD(T) or CCSDT equivalent and experimental reference data. Our statistical analysis reveals that all investigated frozen-pair coupled cluster methods exhibit similar performance, with differences in errors typically within chemical accuracy (1 kcal/mol or 0.05 eV). Notably, the effect of the molecular orbital basis, such as canonical Hartree–Fock or natural pCCD-optimized orbitals, on the IPs is marginal if dynamical correlation is accounted for. Our study suggests that triple excitations are crucial in achieving chemical accuracy in IPs when modeling electron detachment processes with pCCD-based methods.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38752491</pmid><doi>10.1021/acs.jctc.4c00172</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7793-1151</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-05, Vol.20 (10), p.4182-4195 |
issn | 1549-9618 1549-9626 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11137826 |
source | American Chemical Society Journals |
subjects | Accuracy Clusters Correlation Errors Ionization potentials Molecular orbitals Organic chemistry Quantum Electronic Structure Statistical analysis |
title | Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20Ionization%20Potentials%20from%20pCCD%20Tailored%20Coupled%20Cluster%20Models&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Ga%C5%82yn%CC%81ska,%20Marta&rft.date=2024-05-28&rft.volume=20&rft.issue=10&rft.spage=4182&rft.epage=4195&rft.pages=4182-4195&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00172&rft_dat=%3Cproquest_pubme%3E3062727465%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062727465&rft_id=info:pmid/38752491&rfr_iscdi=true |