Synergistic induction of blood-brain barrier properties

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-05, Vol.121 (21), p.e2316006121
Hauptverfasser: Porkoláb, Gergő, Mészáros, Mária, Szecskó, Anikó, Vigh, Judit P, Walter, Fruzsina R, Figueiredo, Ricardo, Kálomista, Ildikó, Hoyk, Zsófia, Vizsnyiczai, Gaszton, Gróf, Ilona, Jan, Jeng-Shiung, Gosselet, Fabien, Pirity, Melinda K, Vastag, Monika, Hudson, Natalie, Campbell, Matthew, Veszelka, Szilvia, Deli, Mária A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page e2316006121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Porkoláb, Gergő
Mészáros, Mária
Szecskó, Anikó
Vigh, Judit P
Walter, Fruzsina R
Figueiredo, Ricardo
Kálomista, Ildikó
Hoyk, Zsófia
Vizsnyiczai, Gaszton
Gróf, Ilona
Jan, Jeng-Shiung
Gosselet, Fabien
Pirity, Melinda K
Vastag, Monika
Hudson, Natalie
Campbell, Matthew
Veszelka, Szilvia
Deli, Mária A
description Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.
doi_str_mv 10.1073/pnas.2316006121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11126970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059461772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c287580a47f274792b808b540c0002595fc4b344082846f60f95c025b26755123</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoOo6u3UnBjZuON2meK5HBFwy4UNchzaQa6SQ1aYX593bw7eou7nfPPYeD0BGGGQZRnXXB5BmpMAfgmOAtNMGgcMmpgm00ASCilJTQPbSf8wsAKCZhF-1VUlDJhJggcb8OLj353Htb-LAcbO9jKGJT1G2My7JOxoeiNil5l4ouxc6l3rt8gHYa02Z3-Dmn6PHq8mF-Uy7urm_nF4vSVoL3pSVSjC8NFQ0RVChSS5A1o2BHM4Qp1lhaV5SCJJLyhkOjmB0XNeGCMUyqKTr_0O2GeuWW1oU-mVZ3ya9MWutovP67Cf5ZP8U3jTEmXAkYFU4_FVJ8HVzu9cpn69rWBBeHrCtgTCrKCB_Rk3_oSxxSGPNtKEU5FmJj6eyDsinmnFzz7QaD3rSiN63on1bGi-PfIb75rxqqd4f0htM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059461772</pqid></control><display><type>article</type><title>Synergistic induction of blood-brain barrier properties</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Porkoláb, Gergő ; Mészáros, Mária ; Szecskó, Anikó ; Vigh, Judit P ; Walter, Fruzsina R ; Figueiredo, Ricardo ; Kálomista, Ildikó ; Hoyk, Zsófia ; Vizsnyiczai, Gaszton ; Gróf, Ilona ; Jan, Jeng-Shiung ; Gosselet, Fabien ; Pirity, Melinda K ; Vastag, Monika ; Hudson, Natalie ; Campbell, Matthew ; Veszelka, Szilvia ; Deli, Mária A</creator><creatorcontrib>Porkoláb, Gergő ; Mészáros, Mária ; Szecskó, Anikó ; Vigh, Judit P ; Walter, Fruzsina R ; Figueiredo, Ricardo ; Kálomista, Ildikó ; Hoyk, Zsófia ; Vizsnyiczai, Gaszton ; Gróf, Ilona ; Jan, Jeng-Shiung ; Gosselet, Fabien ; Pirity, Melinda K ; Vastag, Monika ; Hudson, Natalie ; Campbell, Matthew ; Veszelka, Szilvia ; Deli, Mária A</creatorcontrib><description>Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2316006121</identifier><identifier>PMID: 38748577</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; beta Catenin - metabolism ; Biological Sciences ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain ; Cerebrovascular diseases ; Claudin-5 - genetics ; Claudin-5 - metabolism ; Cyclic AMP ; Cyclic AMP - metabolism ; Drug development ; Efflux ; Endocytosis ; Endothelial cells ; Endothelial Cells - metabolism ; Humans ; Inflammation ; Mice ; Nanoparticles ; Signal transduction ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Synergistic effect ; Tight Junctions - metabolism ; Tightness ; Transforming growth factor-b ; Vascular diseases ; Wnt protein ; Wnt Signaling Pathway ; β-Catenin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-05, Vol.121 (21), p.e2316006121</ispartof><rights>Copyright National Academy of Sciences May 21, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-c287580a47f274792b808b540c0002595fc4b344082846f60f95c025b26755123</cites><orcidid>0000-0002-0481-5026 ; 0000-0003-2435-3444 ; 0000-0002-8379-404X ; 0000-0003-4694-3891 ; 0009-0005-4258-8636 ; 0000-0001-6084-6524 ; 0000-0002-6210-1689 ; 0000-0002-4847-9618 ; 0000-0002-2949-3510 ; 0000-0001-8864-1184 ; 0000-0003-3024-1254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126970/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126970/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38748577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Porkoláb, Gergő</creatorcontrib><creatorcontrib>Mészáros, Mária</creatorcontrib><creatorcontrib>Szecskó, Anikó</creatorcontrib><creatorcontrib>Vigh, Judit P</creatorcontrib><creatorcontrib>Walter, Fruzsina R</creatorcontrib><creatorcontrib>Figueiredo, Ricardo</creatorcontrib><creatorcontrib>Kálomista, Ildikó</creatorcontrib><creatorcontrib>Hoyk, Zsófia</creatorcontrib><creatorcontrib>Vizsnyiczai, Gaszton</creatorcontrib><creatorcontrib>Gróf, Ilona</creatorcontrib><creatorcontrib>Jan, Jeng-Shiung</creatorcontrib><creatorcontrib>Gosselet, Fabien</creatorcontrib><creatorcontrib>Pirity, Melinda K</creatorcontrib><creatorcontrib>Vastag, Monika</creatorcontrib><creatorcontrib>Hudson, Natalie</creatorcontrib><creatorcontrib>Campbell, Matthew</creatorcontrib><creatorcontrib>Veszelka, Szilvia</creatorcontrib><creatorcontrib>Deli, Mária A</creatorcontrib><title>Synergistic induction of blood-brain barrier properties</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.</description><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>Biological Sciences</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Cerebrovascular diseases</subject><subject>Claudin-5 - genetics</subject><subject>Claudin-5 - metabolism</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Drug development</subject><subject>Efflux</subject><subject>Endocytosis</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Synergistic effect</subject><subject>Tight Junctions - metabolism</subject><subject>Tightness</subject><subject>Transforming growth factor-b</subject><subject>Vascular diseases</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><subject>β-Catenin</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLxDAUhYMoOo6u3UnBjZuON2meK5HBFwy4UNchzaQa6SQ1aYX593bw7eou7nfPPYeD0BGGGQZRnXXB5BmpMAfgmOAtNMGgcMmpgm00ASCilJTQPbSf8wsAKCZhF-1VUlDJhJggcb8OLj353Htb-LAcbO9jKGJT1G2My7JOxoeiNil5l4ouxc6l3rt8gHYa02Z3-Dmn6PHq8mF-Uy7urm_nF4vSVoL3pSVSjC8NFQ0RVChSS5A1o2BHM4Qp1lhaV5SCJJLyhkOjmB0XNeGCMUyqKTr_0O2GeuWW1oU-mVZ3ya9MWutovP67Cf5ZP8U3jTEmXAkYFU4_FVJ8HVzu9cpn69rWBBeHrCtgTCrKCB_Rk3_oSxxSGPNtKEU5FmJj6eyDsinmnFzz7QaD3rSiN63on1bGi-PfIb75rxqqd4f0htM</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Porkoláb, Gergő</creator><creator>Mészáros, Mária</creator><creator>Szecskó, Anikó</creator><creator>Vigh, Judit P</creator><creator>Walter, Fruzsina R</creator><creator>Figueiredo, Ricardo</creator><creator>Kálomista, Ildikó</creator><creator>Hoyk, Zsófia</creator><creator>Vizsnyiczai, Gaszton</creator><creator>Gróf, Ilona</creator><creator>Jan, Jeng-Shiung</creator><creator>Gosselet, Fabien</creator><creator>Pirity, Melinda K</creator><creator>Vastag, Monika</creator><creator>Hudson, Natalie</creator><creator>Campbell, Matthew</creator><creator>Veszelka, Szilvia</creator><creator>Deli, Mária A</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0481-5026</orcidid><orcidid>https://orcid.org/0000-0003-2435-3444</orcidid><orcidid>https://orcid.org/0000-0002-8379-404X</orcidid><orcidid>https://orcid.org/0000-0003-4694-3891</orcidid><orcidid>https://orcid.org/0009-0005-4258-8636</orcidid><orcidid>https://orcid.org/0000-0001-6084-6524</orcidid><orcidid>https://orcid.org/0000-0002-6210-1689</orcidid><orcidid>https://orcid.org/0000-0002-4847-9618</orcidid><orcidid>https://orcid.org/0000-0002-2949-3510</orcidid><orcidid>https://orcid.org/0000-0001-8864-1184</orcidid><orcidid>https://orcid.org/0000-0003-3024-1254</orcidid></search><sort><creationdate>20240521</creationdate><title>Synergistic induction of blood-brain barrier properties</title><author>Porkoláb, Gergő ; Mészáros, Mária ; Szecskó, Anikó ; Vigh, Judit P ; Walter, Fruzsina R ; Figueiredo, Ricardo ; Kálomista, Ildikó ; Hoyk, Zsófia ; Vizsnyiczai, Gaszton ; Gróf, Ilona ; Jan, Jeng-Shiung ; Gosselet, Fabien ; Pirity, Melinda K ; Vastag, Monika ; Hudson, Natalie ; Campbell, Matthew ; Veszelka, Szilvia ; Deli, Mária A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c287580a47f274792b808b540c0002595fc4b344082846f60f95c025b26755123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>Biological Sciences</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Cerebrovascular diseases</topic><topic>Claudin-5 - genetics</topic><topic>Claudin-5 - metabolism</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Drug development</topic><topic>Efflux</topic><topic>Endocytosis</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Synergistic effect</topic><topic>Tight Junctions - metabolism</topic><topic>Tightness</topic><topic>Transforming growth factor-b</topic><topic>Vascular diseases</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porkoláb, Gergő</creatorcontrib><creatorcontrib>Mészáros, Mária</creatorcontrib><creatorcontrib>Szecskó, Anikó</creatorcontrib><creatorcontrib>Vigh, Judit P</creatorcontrib><creatorcontrib>Walter, Fruzsina R</creatorcontrib><creatorcontrib>Figueiredo, Ricardo</creatorcontrib><creatorcontrib>Kálomista, Ildikó</creatorcontrib><creatorcontrib>Hoyk, Zsófia</creatorcontrib><creatorcontrib>Vizsnyiczai, Gaszton</creatorcontrib><creatorcontrib>Gróf, Ilona</creatorcontrib><creatorcontrib>Jan, Jeng-Shiung</creatorcontrib><creatorcontrib>Gosselet, Fabien</creatorcontrib><creatorcontrib>Pirity, Melinda K</creatorcontrib><creatorcontrib>Vastag, Monika</creatorcontrib><creatorcontrib>Hudson, Natalie</creatorcontrib><creatorcontrib>Campbell, Matthew</creatorcontrib><creatorcontrib>Veszelka, Szilvia</creatorcontrib><creatorcontrib>Deli, Mária A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porkoláb, Gergő</au><au>Mészáros, Mária</au><au>Szecskó, Anikó</au><au>Vigh, Judit P</au><au>Walter, Fruzsina R</au><au>Figueiredo, Ricardo</au><au>Kálomista, Ildikó</au><au>Hoyk, Zsófia</au><au>Vizsnyiczai, Gaszton</au><au>Gróf, Ilona</au><au>Jan, Jeng-Shiung</au><au>Gosselet, Fabien</au><au>Pirity, Melinda K</au><au>Vastag, Monika</au><au>Hudson, Natalie</au><au>Campbell, Matthew</au><au>Veszelka, Szilvia</au><au>Deli, Mária A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic induction of blood-brain barrier properties</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-05-21</date><risdate>2024</risdate><volume>121</volume><issue>21</issue><spage>e2316006121</spage><pages>e2316006121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38748577</pmid><doi>10.1073/pnas.2316006121</doi><orcidid>https://orcid.org/0000-0002-0481-5026</orcidid><orcidid>https://orcid.org/0000-0003-2435-3444</orcidid><orcidid>https://orcid.org/0000-0002-8379-404X</orcidid><orcidid>https://orcid.org/0000-0003-4694-3891</orcidid><orcidid>https://orcid.org/0009-0005-4258-8636</orcidid><orcidid>https://orcid.org/0000-0001-6084-6524</orcidid><orcidid>https://orcid.org/0000-0002-6210-1689</orcidid><orcidid>https://orcid.org/0000-0002-4847-9618</orcidid><orcidid>https://orcid.org/0000-0002-2949-3510</orcidid><orcidid>https://orcid.org/0000-0001-8864-1184</orcidid><orcidid>https://orcid.org/0000-0003-3024-1254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-05, Vol.121 (21), p.e2316006121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11126970
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
beta Catenin - metabolism
Biological Sciences
Blood-brain barrier
Blood-Brain Barrier - metabolism
Brain
Cerebrovascular diseases
Claudin-5 - genetics
Claudin-5 - metabolism
Cyclic AMP
Cyclic AMP - metabolism
Drug development
Efflux
Endocytosis
Endothelial cells
Endothelial Cells - metabolism
Humans
Inflammation
Mice
Nanoparticles
Signal transduction
Stem cells
Stem Cells - cytology
Stem Cells - metabolism
Synergistic effect
Tight Junctions - metabolism
Tightness
Transforming growth factor-b
Vascular diseases
Wnt protein
Wnt Signaling Pathway
β-Catenin
title Synergistic induction of blood-brain barrier properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20induction%20of%20blood-brain%20barrier%20properties&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Porkol%C3%A1b,%20Gerg%C5%91&rft.date=2024-05-21&rft.volume=121&rft.issue=21&rft.spage=e2316006121&rft.pages=e2316006121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2316006121&rft_dat=%3Cproquest_pubme%3E3059461772%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059461772&rft_id=info:pmid/38748577&rfr_iscdi=true