Synergistic induction of blood-brain barrier properties
Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteri...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-05, Vol.121 (21), p.e2316006121 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | e2316006121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Porkoláb, Gergő Mészáros, Mária Szecskó, Anikó Vigh, Judit P Walter, Fruzsina R Figueiredo, Ricardo Kálomista, Ildikó Hoyk, Zsófia Vizsnyiczai, Gaszton Gróf, Ilona Jan, Jeng-Shiung Gosselet, Fabien Pirity, Melinda K Vastag, Monika Hudson, Natalie Campbell, Matthew Veszelka, Szilvia Deli, Mária A |
description | Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories. |
doi_str_mv | 10.1073/pnas.2316006121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11126970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059461772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c287580a47f274792b808b540c0002595fc4b344082846f60f95c025b26755123</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoOo6u3UnBjZuON2meK5HBFwy4UNchzaQa6SQ1aYX593bw7eou7nfPPYeD0BGGGQZRnXXB5BmpMAfgmOAtNMGgcMmpgm00ASCilJTQPbSf8wsAKCZhF-1VUlDJhJggcb8OLj353Htb-LAcbO9jKGJT1G2My7JOxoeiNil5l4ouxc6l3rt8gHYa02Z3-Dmn6PHq8mF-Uy7urm_nF4vSVoL3pSVSjC8NFQ0RVChSS5A1o2BHM4Qp1lhaV5SCJJLyhkOjmB0XNeGCMUyqKTr_0O2GeuWW1oU-mVZ3ya9MWutovP67Cf5ZP8U3jTEmXAkYFU4_FVJ8HVzu9cpn69rWBBeHrCtgTCrKCB_Rk3_oSxxSGPNtKEU5FmJj6eyDsinmnFzz7QaD3rSiN63on1bGi-PfIb75rxqqd4f0htM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059461772</pqid></control><display><type>article</type><title>Synergistic induction of blood-brain barrier properties</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Porkoláb, Gergő ; Mészáros, Mária ; Szecskó, Anikó ; Vigh, Judit P ; Walter, Fruzsina R ; Figueiredo, Ricardo ; Kálomista, Ildikó ; Hoyk, Zsófia ; Vizsnyiczai, Gaszton ; Gróf, Ilona ; Jan, Jeng-Shiung ; Gosselet, Fabien ; Pirity, Melinda K ; Vastag, Monika ; Hudson, Natalie ; Campbell, Matthew ; Veszelka, Szilvia ; Deli, Mária A</creator><creatorcontrib>Porkoláb, Gergő ; Mészáros, Mária ; Szecskó, Anikó ; Vigh, Judit P ; Walter, Fruzsina R ; Figueiredo, Ricardo ; Kálomista, Ildikó ; Hoyk, Zsófia ; Vizsnyiczai, Gaszton ; Gróf, Ilona ; Jan, Jeng-Shiung ; Gosselet, Fabien ; Pirity, Melinda K ; Vastag, Monika ; Hudson, Natalie ; Campbell, Matthew ; Veszelka, Szilvia ; Deli, Mária A</creatorcontrib><description>Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2316006121</identifier><identifier>PMID: 38748577</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; beta Catenin - metabolism ; Biological Sciences ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain ; Cerebrovascular diseases ; Claudin-5 - genetics ; Claudin-5 - metabolism ; Cyclic AMP ; Cyclic AMP - metabolism ; Drug development ; Efflux ; Endocytosis ; Endothelial cells ; Endothelial Cells - metabolism ; Humans ; Inflammation ; Mice ; Nanoparticles ; Signal transduction ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Synergistic effect ; Tight Junctions - metabolism ; Tightness ; Transforming growth factor-b ; Vascular diseases ; Wnt protein ; Wnt Signaling Pathway ; β-Catenin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-05, Vol.121 (21), p.e2316006121</ispartof><rights>Copyright National Academy of Sciences May 21, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-c287580a47f274792b808b540c0002595fc4b344082846f60f95c025b26755123</cites><orcidid>0000-0002-0481-5026 ; 0000-0003-2435-3444 ; 0000-0002-8379-404X ; 0000-0003-4694-3891 ; 0009-0005-4258-8636 ; 0000-0001-6084-6524 ; 0000-0002-6210-1689 ; 0000-0002-4847-9618 ; 0000-0002-2949-3510 ; 0000-0001-8864-1184 ; 0000-0003-3024-1254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126970/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126970/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38748577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Porkoláb, Gergő</creatorcontrib><creatorcontrib>Mészáros, Mária</creatorcontrib><creatorcontrib>Szecskó, Anikó</creatorcontrib><creatorcontrib>Vigh, Judit P</creatorcontrib><creatorcontrib>Walter, Fruzsina R</creatorcontrib><creatorcontrib>Figueiredo, Ricardo</creatorcontrib><creatorcontrib>Kálomista, Ildikó</creatorcontrib><creatorcontrib>Hoyk, Zsófia</creatorcontrib><creatorcontrib>Vizsnyiczai, Gaszton</creatorcontrib><creatorcontrib>Gróf, Ilona</creatorcontrib><creatorcontrib>Jan, Jeng-Shiung</creatorcontrib><creatorcontrib>Gosselet, Fabien</creatorcontrib><creatorcontrib>Pirity, Melinda K</creatorcontrib><creatorcontrib>Vastag, Monika</creatorcontrib><creatorcontrib>Hudson, Natalie</creatorcontrib><creatorcontrib>Campbell, Matthew</creatorcontrib><creatorcontrib>Veszelka, Szilvia</creatorcontrib><creatorcontrib>Deli, Mária A</creatorcontrib><title>Synergistic induction of blood-brain barrier properties</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.</description><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>Biological Sciences</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Cerebrovascular diseases</subject><subject>Claudin-5 - genetics</subject><subject>Claudin-5 - metabolism</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Drug development</subject><subject>Efflux</subject><subject>Endocytosis</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Synergistic effect</subject><subject>Tight Junctions - metabolism</subject><subject>Tightness</subject><subject>Transforming growth factor-b</subject><subject>Vascular diseases</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><subject>β-Catenin</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLxDAUhYMoOo6u3UnBjZuON2meK5HBFwy4UNchzaQa6SQ1aYX593bw7eou7nfPPYeD0BGGGQZRnXXB5BmpMAfgmOAtNMGgcMmpgm00ASCilJTQPbSf8wsAKCZhF-1VUlDJhJggcb8OLj353Htb-LAcbO9jKGJT1G2My7JOxoeiNil5l4ouxc6l3rt8gHYa02Z3-Dmn6PHq8mF-Uy7urm_nF4vSVoL3pSVSjC8NFQ0RVChSS5A1o2BHM4Qp1lhaV5SCJJLyhkOjmB0XNeGCMUyqKTr_0O2GeuWW1oU-mVZ3ya9MWutovP67Cf5ZP8U3jTEmXAkYFU4_FVJ8HVzu9cpn69rWBBeHrCtgTCrKCB_Rk3_oSxxSGPNtKEU5FmJj6eyDsinmnFzz7QaD3rSiN63on1bGi-PfIb75rxqqd4f0htM</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Porkoláb, Gergő</creator><creator>Mészáros, Mária</creator><creator>Szecskó, Anikó</creator><creator>Vigh, Judit P</creator><creator>Walter, Fruzsina R</creator><creator>Figueiredo, Ricardo</creator><creator>Kálomista, Ildikó</creator><creator>Hoyk, Zsófia</creator><creator>Vizsnyiczai, Gaszton</creator><creator>Gróf, Ilona</creator><creator>Jan, Jeng-Shiung</creator><creator>Gosselet, Fabien</creator><creator>Pirity, Melinda K</creator><creator>Vastag, Monika</creator><creator>Hudson, Natalie</creator><creator>Campbell, Matthew</creator><creator>Veszelka, Szilvia</creator><creator>Deli, Mária A</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0481-5026</orcidid><orcidid>https://orcid.org/0000-0003-2435-3444</orcidid><orcidid>https://orcid.org/0000-0002-8379-404X</orcidid><orcidid>https://orcid.org/0000-0003-4694-3891</orcidid><orcidid>https://orcid.org/0009-0005-4258-8636</orcidid><orcidid>https://orcid.org/0000-0001-6084-6524</orcidid><orcidid>https://orcid.org/0000-0002-6210-1689</orcidid><orcidid>https://orcid.org/0000-0002-4847-9618</orcidid><orcidid>https://orcid.org/0000-0002-2949-3510</orcidid><orcidid>https://orcid.org/0000-0001-8864-1184</orcidid><orcidid>https://orcid.org/0000-0003-3024-1254</orcidid></search><sort><creationdate>20240521</creationdate><title>Synergistic induction of blood-brain barrier properties</title><author>Porkoláb, Gergő ; Mészáros, Mária ; Szecskó, Anikó ; Vigh, Judit P ; Walter, Fruzsina R ; Figueiredo, Ricardo ; Kálomista, Ildikó ; Hoyk, Zsófia ; Vizsnyiczai, Gaszton ; Gróf, Ilona ; Jan, Jeng-Shiung ; Gosselet, Fabien ; Pirity, Melinda K ; Vastag, Monika ; Hudson, Natalie ; Campbell, Matthew ; Veszelka, Szilvia ; Deli, Mária A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c287580a47f274792b808b540c0002595fc4b344082846f60f95c025b26755123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>Biological Sciences</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Cerebrovascular diseases</topic><topic>Claudin-5 - genetics</topic><topic>Claudin-5 - metabolism</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Drug development</topic><topic>Efflux</topic><topic>Endocytosis</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Synergistic effect</topic><topic>Tight Junctions - metabolism</topic><topic>Tightness</topic><topic>Transforming growth factor-b</topic><topic>Vascular diseases</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porkoláb, Gergő</creatorcontrib><creatorcontrib>Mészáros, Mária</creatorcontrib><creatorcontrib>Szecskó, Anikó</creatorcontrib><creatorcontrib>Vigh, Judit P</creatorcontrib><creatorcontrib>Walter, Fruzsina R</creatorcontrib><creatorcontrib>Figueiredo, Ricardo</creatorcontrib><creatorcontrib>Kálomista, Ildikó</creatorcontrib><creatorcontrib>Hoyk, Zsófia</creatorcontrib><creatorcontrib>Vizsnyiczai, Gaszton</creatorcontrib><creatorcontrib>Gróf, Ilona</creatorcontrib><creatorcontrib>Jan, Jeng-Shiung</creatorcontrib><creatorcontrib>Gosselet, Fabien</creatorcontrib><creatorcontrib>Pirity, Melinda K</creatorcontrib><creatorcontrib>Vastag, Monika</creatorcontrib><creatorcontrib>Hudson, Natalie</creatorcontrib><creatorcontrib>Campbell, Matthew</creatorcontrib><creatorcontrib>Veszelka, Szilvia</creatorcontrib><creatorcontrib>Deli, Mária A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porkoláb, Gergő</au><au>Mészáros, Mária</au><au>Szecskó, Anikó</au><au>Vigh, Judit P</au><au>Walter, Fruzsina R</au><au>Figueiredo, Ricardo</au><au>Kálomista, Ildikó</au><au>Hoyk, Zsófia</au><au>Vizsnyiczai, Gaszton</au><au>Gróf, Ilona</au><au>Jan, Jeng-Shiung</au><au>Gosselet, Fabien</au><au>Pirity, Melinda K</au><au>Vastag, Monika</au><au>Hudson, Natalie</au><au>Campbell, Matthew</au><au>Veszelka, Szilvia</au><au>Deli, Mária A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic induction of blood-brain barrier properties</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-05-21</date><risdate>2024</risdate><volume>121</volume><issue>21</issue><spage>e2316006121</spage><pages>e2316006121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38748577</pmid><doi>10.1073/pnas.2316006121</doi><orcidid>https://orcid.org/0000-0002-0481-5026</orcidid><orcidid>https://orcid.org/0000-0003-2435-3444</orcidid><orcidid>https://orcid.org/0000-0002-8379-404X</orcidid><orcidid>https://orcid.org/0000-0003-4694-3891</orcidid><orcidid>https://orcid.org/0009-0005-4258-8636</orcidid><orcidid>https://orcid.org/0000-0001-6084-6524</orcidid><orcidid>https://orcid.org/0000-0002-6210-1689</orcidid><orcidid>https://orcid.org/0000-0002-4847-9618</orcidid><orcidid>https://orcid.org/0000-0002-2949-3510</orcidid><orcidid>https://orcid.org/0000-0001-8864-1184</orcidid><orcidid>https://orcid.org/0000-0003-3024-1254</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-05, Vol.121 (21), p.e2316006121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11126970 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals beta Catenin - metabolism Biological Sciences Blood-brain barrier Blood-Brain Barrier - metabolism Brain Cerebrovascular diseases Claudin-5 - genetics Claudin-5 - metabolism Cyclic AMP Cyclic AMP - metabolism Drug development Efflux Endocytosis Endothelial cells Endothelial Cells - metabolism Humans Inflammation Mice Nanoparticles Signal transduction Stem cells Stem Cells - cytology Stem Cells - metabolism Synergistic effect Tight Junctions - metabolism Tightness Transforming growth factor-b Vascular diseases Wnt protein Wnt Signaling Pathway β-Catenin |
title | Synergistic induction of blood-brain barrier properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20induction%20of%20blood-brain%20barrier%20properties&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Porkol%C3%A1b,%20Gerg%C5%91&rft.date=2024-05-21&rft.volume=121&rft.issue=21&rft.spage=e2316006121&rft.pages=e2316006121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2316006121&rft_dat=%3Cproquest_pubme%3E3059461772%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059461772&rft_id=info:pmid/38748577&rfr_iscdi=true |