Eukaryotic DNA damage checkpoint activation in response to double-strand breaks
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in orde...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2012-05, Vol.69 (9), p.1447-1473 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1473 |
---|---|
container_issue | 9 |
container_start_page | 1447 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 69 |
creator | Finn, Karen Lowndes, Noel Francis Grenon, Muriel |
description | Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term “checkpoint” was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in
Saccharomyces cerevisiae
, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells. |
doi_str_mv | 10.1007/s00018-011-0875-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11115150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1009535380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-4ab168a07bf730798eabe9065ad01093b07c5c493ecd1457db1bf1f19b04d1583</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMo7h_9AF4k4MVLa1Wn00lOsuyuq7C4FwVvIUmnZ7PTk4xJ94Lf3gwzLqsgmEsC9auXevUIeYXwDgHE-wIAKBtAbEAK3rAn5Bi7FhoFAp8e3r1svx-Rk1LuKsxl2z8nR20LkvXQH5Oby2Vt8s80B0cvvpzRwWzMylN36916m0KcqXFzuDdzSJGGSLMv2xSLp3OiQ1rs5JsyZxMHarM36_KCPBvNVPzLw31Kvn28_Hr-qbm-ufp8fnbdOC5gbjpjsZcGhB0FA6GkN9Yr6LkZAEExC8Jx1ynm3YAdF4NFO-KIykI3VBfslHzY624Xu_GD87FOMeltDptqRycT9J-VGG71Kt1rrIcjh6rw9qCQ04_Fl1lvQnF-mkz0aSkaoS6pUxL7_0BBccaZ3Km--Qu9S0uOdRU7SkrVKugqhXvK5VRK9uPD4Ag7Tuh9tLpGq3fRalZ7Xj92_NDxO8sKtHug1FJc-fz463-p_gIhB644</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008892904</pqid></control><display><type>article</type><title>Eukaryotic DNA damage checkpoint activation in response to double-strand breaks</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Finn, Karen ; Lowndes, Noel Francis ; Grenon, Muriel</creator><creatorcontrib>Finn, Karen ; Lowndes, Noel Francis ; Grenon, Muriel</creatorcontrib><description>Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term “checkpoint” was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in
Saccharomyces cerevisiae
, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-011-0875-3</identifier><identifier>PMID: 22083606</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cell Biology ; Cell cycle ; Cell Cycle - genetics ; Cell Cycle Checkpoints - genetics ; Cell Cycle Checkpoints - physiology ; Cell Cycle Proteins - metabolism ; Checkpoint Kinase 1 ; Checkpoint Kinase 2 ; Cytotoxicity ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Damage - genetics ; DNA Damage - physiology ; DNA repair ; Eukaryota - cytology ; Eukaryota - genetics ; Eukaryota - metabolism ; Eukaryotes ; Genomes ; Genomic Instability ; Humans ; Life Sciences ; Models, Biological ; Models, Genetic ; Molecular modelling ; Protein Kinases - metabolism ; Protein Serine-Threonine Kinases - metabolism ; Review ; Reviews ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Signal transduction ; Signal Transduction - genetics ; Yeast ; Yeasts</subject><ispartof>Cellular and molecular life sciences : CMLS, 2012-05, Vol.69 (9), p.1447-1473</ispartof><rights>Springer Basel AG 2011</rights><rights>Springer Basel AG 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-4ab168a07bf730798eabe9065ad01093b07c5c493ecd1457db1bf1f19b04d1583</citedby><cites>FETCH-LOGICAL-c570t-4ab168a07bf730798eabe9065ad01093b07c5c493ecd1457db1bf1f19b04d1583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115150/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115150/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22083606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Finn, Karen</creatorcontrib><creatorcontrib>Lowndes, Noel Francis</creatorcontrib><creatorcontrib>Grenon, Muriel</creatorcontrib><title>Eukaryotic DNA damage checkpoint activation in response to double-strand breaks</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term “checkpoint” was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in
Saccharomyces cerevisiae
, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Cycle Checkpoints - physiology</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Checkpoint Kinase 1</subject><subject>Checkpoint Kinase 2</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA Damage - physiology</subject><subject>DNA repair</subject><subject>Eukaryota - cytology</subject><subject>Eukaryota - genetics</subject><subject>Eukaryota - metabolism</subject><subject>Eukaryotes</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Molecular modelling</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Review</subject><subject>Reviews</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU-LFDEQxYMo7h_9AF4k4MVLa1Wn00lOsuyuq7C4FwVvIUmnZ7PTk4xJ94Lf3gwzLqsgmEsC9auXevUIeYXwDgHE-wIAKBtAbEAK3rAn5Bi7FhoFAp8e3r1svx-Rk1LuKsxl2z8nR20LkvXQH5Oby2Vt8s80B0cvvpzRwWzMylN36916m0KcqXFzuDdzSJGGSLMv2xSLp3OiQ1rs5JsyZxMHarM36_KCPBvNVPzLw31Kvn28_Hr-qbm-ufp8fnbdOC5gbjpjsZcGhB0FA6GkN9Yr6LkZAEExC8Jx1ynm3YAdF4NFO-KIykI3VBfslHzY624Xu_GD87FOMeltDptqRycT9J-VGG71Kt1rrIcjh6rw9qCQ04_Fl1lvQnF-mkz0aSkaoS6pUxL7_0BBccaZ3Km--Qu9S0uOdRU7SkrVKugqhXvK5VRK9uPD4Ag7Tuh9tLpGq3fRalZ7Xj92_NDxO8sKtHug1FJc-fz463-p_gIhB644</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Finn, Karen</creator><creator>Lowndes, Noel Francis</creator><creator>Grenon, Muriel</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120501</creationdate><title>Eukaryotic DNA damage checkpoint activation in response to double-strand breaks</title><author>Finn, Karen ; Lowndes, Noel Francis ; Grenon, Muriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-4ab168a07bf730798eabe9065ad01093b07c5c493ecd1457db1bf1f19b04d1583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Cycle Checkpoints - physiology</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Checkpoint Kinase 1</topic><topic>Checkpoint Kinase 2</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA Damage - physiology</topic><topic>DNA repair</topic><topic>Eukaryota - cytology</topic><topic>Eukaryota - genetics</topic><topic>Eukaryota - metabolism</topic><topic>Eukaryotes</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Molecular modelling</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Review</topic><topic>Reviews</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finn, Karen</creatorcontrib><creatorcontrib>Lowndes, Noel Francis</creatorcontrib><creatorcontrib>Grenon, Muriel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finn, Karen</au><au>Lowndes, Noel Francis</au><au>Grenon, Muriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eukaryotic DNA damage checkpoint activation in response to double-strand breaks</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>69</volume><issue>9</issue><spage>1447</spage><epage>1473</epage><pages>1447-1473</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term “checkpoint” was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in
Saccharomyces cerevisiae
, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><pmid>22083606</pmid><doi>10.1007/s00018-011-0875-3</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2012-05, Vol.69 (9), p.1447-1473 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11115150 |
source | MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biomedical and Life Sciences Biomedicine Cancer Cell Biology Cell cycle Cell Cycle - genetics Cell Cycle Checkpoints - genetics Cell Cycle Checkpoints - physiology Cell Cycle Proteins - metabolism Checkpoint Kinase 1 Checkpoint Kinase 2 Cytotoxicity Deoxyribonucleic acid DNA DNA Breaks, Double-Stranded DNA damage DNA Damage - genetics DNA Damage - physiology DNA repair Eukaryota - cytology Eukaryota - genetics Eukaryota - metabolism Eukaryotes Genomes Genomic Instability Humans Life Sciences Models, Biological Models, Genetic Molecular modelling Protein Kinases - metabolism Protein Serine-Threonine Kinases - metabolism Review Reviews Saccharomyces cerevisiae Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Signal transduction Signal Transduction - genetics Yeast Yeasts |
title | Eukaryotic DNA damage checkpoint activation in response to double-strand breaks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eukaryotic%20DNA%20damage%20checkpoint%20activation%20in%20response%20to%20double-strand%20breaks&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Finn,%20Karen&rft.date=2012-05-01&rft.volume=69&rft.issue=9&rft.spage=1447&rft.epage=1473&rft.pages=1447-1473&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-011-0875-3&rft_dat=%3Cproquest_pubme%3E1009535380%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1008892904&rft_id=info:pmid/22083606&rfr_iscdi=true |