bacterial SoxAX cytochromes

SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2013-03, Vol.70 (6), p.977-992
Hauptverfasser: Kappler, Ulrike, Maher, Megan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 992
container_issue 6
container_start_page 977
container_title Cellular and molecular life sciences : CMLS
container_volume 70
creator Kappler, Ulrike
Maher, Megan J
description SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.
doi_str_mv 10.1007/s00018-012-1098-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11113948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2897704601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-42a8454405ec487f094e5bd35b5861d609e759c19a031b72d28d625e26a0a25b3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMofqz-ABFU8OKlOjNN2uQkIn6B4GEVvIW0za6VbqNJV9x_b5ausnoQ55KQed53kryM7SKcIEB-GgAAZQJICYKSyWyFbSInSBTkuLrYZ5KeNthWCC8RFpKydbZBFAmOfJPtFabsrK9Nczh0H-dPh-Wsc-WzdxMbttnayDTB7izWAXu8uny4uEnu7q9vL87vkpJL0SWcjOSCcxA2HuQjUNyKokpFIWSGVQbK5kKVqAykWORUkawyEpYyA4ZEkQ7YWe_7Oi0mtipt23nT6FdfT4yfaWdq_bPT1s967N41xkoVl9HheOHg3dvUhk5P6lDapjGtddOgMaVUolI8-weKhDknnKNHv9AXN_Vt_AqNpFAqJaLvgGFPld6F4O3o--IIeh6T7mPSMSY9j0nPomZ_-cXfiq9cIkA9EGKrHVu_NPoP14NeNDJOm7Gvg34cEmAG8-JcpJ8xoKPV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291899532</pqid></control><display><type>article</type><title>bacterial SoxAX cytochromes</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kappler, Ulrike ; Maher, Megan J</creator><creatorcontrib>Kappler, Ulrike ; Maher, Megan J</creatorcontrib><description>SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-012-1098-y</identifier><identifier>PMID: 22907414</identifier><language>eng</language><publisher>Basel: Springer-Verlag</publisher><subject>active sites ; Amino Acid Sequence ; Bacteria ; Bacteria - chemistry ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Catalysis ; catalytic activity ; Catalytic Domain - genetics ; Cell Biology ; Cellular biology ; Cluster Analysis ; Crystal structure ; cysteine ; cytochromes ; Cytochromes - chemistry ; Cytochromes - metabolism ; Dimerization ; Electron Spin Resonance Spectroscopy ; Enzymes ; heme ; Heme - metabolism ; Iron ; Life Sciences ; Models, Molecular ; Molecular Sequence Data ; Oxidation ; Oxidation-Reduction ; Phylogeny ; Protein Conformation ; Proteins ; Review ; Signal Transduction - physiology ; Sulfur ; thiosulfates ; Thiosulfates - metabolism</subject><ispartof>Cellular and molecular life sciences : CMLS, 2013-03, Vol.70 (6), p.977-992</ispartof><rights>Springer Basel AG 2012</rights><rights>Springer Basel 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-42a8454405ec487f094e5bd35b5861d609e759c19a031b72d28d625e26a0a25b3</citedby><cites>FETCH-LOGICAL-c485t-42a8454405ec487f094e5bd35b5861d609e759c19a031b72d28d625e26a0a25b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113948/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113948/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22907414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kappler, Ulrike</creatorcontrib><creatorcontrib>Maher, Megan J</creatorcontrib><title>bacterial SoxAX cytochromes</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.</description><subject>active sites</subject><subject>Amino Acid Sequence</subject><subject>Bacteria</subject><subject>Bacteria - chemistry</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Catalysis</subject><subject>catalytic activity</subject><subject>Catalytic Domain - genetics</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Cluster Analysis</subject><subject>Crystal structure</subject><subject>cysteine</subject><subject>cytochromes</subject><subject>Cytochromes - chemistry</subject><subject>Cytochromes - metabolism</subject><subject>Dimerization</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Enzymes</subject><subject>heme</subject><subject>Heme - metabolism</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phylogeny</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Review</subject><subject>Signal Transduction - physiology</subject><subject>Sulfur</subject><subject>thiosulfates</subject><subject>Thiosulfates - metabolism</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1LxDAQhoMofqz-ABFU8OKlOjNN2uQkIn6B4GEVvIW0za6VbqNJV9x_b5ausnoQ55KQed53kryM7SKcIEB-GgAAZQJICYKSyWyFbSInSBTkuLrYZ5KeNthWCC8RFpKydbZBFAmOfJPtFabsrK9Nczh0H-dPh-Wsc-WzdxMbttnayDTB7izWAXu8uny4uEnu7q9vL87vkpJL0SWcjOSCcxA2HuQjUNyKokpFIWSGVQbK5kKVqAykWORUkawyEpYyA4ZEkQ7YWe_7Oi0mtipt23nT6FdfT4yfaWdq_bPT1s967N41xkoVl9HheOHg3dvUhk5P6lDapjGtddOgMaVUolI8-weKhDknnKNHv9AXN_Vt_AqNpFAqJaLvgGFPld6F4O3o--IIeh6T7mPSMSY9j0nPomZ_-cXfiq9cIkA9EGKrHVu_NPoP14NeNDJOm7Gvg34cEmAG8-JcpJ8xoKPV</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Kappler, Ulrike</creator><creator>Maher, Megan J</creator><general>Springer-Verlag</general><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>bacterial SoxAX cytochromes</title><author>Kappler, Ulrike ; Maher, Megan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-42a8454405ec487f094e5bd35b5861d609e759c19a031b72d28d625e26a0a25b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>active sites</topic><topic>Amino Acid Sequence</topic><topic>Bacteria</topic><topic>Bacteria - chemistry</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Catalysis</topic><topic>catalytic activity</topic><topic>Catalytic Domain - genetics</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Cluster Analysis</topic><topic>Crystal structure</topic><topic>cysteine</topic><topic>cytochromes</topic><topic>Cytochromes - chemistry</topic><topic>Cytochromes - metabolism</topic><topic>Dimerization</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Enzymes</topic><topic>heme</topic><topic>Heme - metabolism</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phylogeny</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Review</topic><topic>Signal Transduction - physiology</topic><topic>Sulfur</topic><topic>thiosulfates</topic><topic>Thiosulfates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kappler, Ulrike</creatorcontrib><creatorcontrib>Maher, Megan J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kappler, Ulrike</au><au>Maher, Megan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>bacterial SoxAX cytochromes</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>70</volume><issue>6</issue><spage>977</spage><epage>992</epage><pages>977-992</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction.</abstract><cop>Basel</cop><pub>Springer-Verlag</pub><pmid>22907414</pmid><doi>10.1007/s00018-012-1098-y</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2013-03, Vol.70 (6), p.977-992
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11113948
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects active sites
Amino Acid Sequence
Bacteria
Bacteria - chemistry
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Biochemistry
Biomedical and Life Sciences
Biomedicine
Catalysis
catalytic activity
Catalytic Domain - genetics
Cell Biology
Cellular biology
Cluster Analysis
Crystal structure
cysteine
cytochromes
Cytochromes - chemistry
Cytochromes - metabolism
Dimerization
Electron Spin Resonance Spectroscopy
Enzymes
heme
Heme - metabolism
Iron
Life Sciences
Models, Molecular
Molecular Sequence Data
Oxidation
Oxidation-Reduction
Phylogeny
Protein Conformation
Proteins
Review
Signal Transduction - physiology
Sulfur
thiosulfates
Thiosulfates - metabolism
title bacterial SoxAX cytochromes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=bacterial%20SoxAX%20cytochromes&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Kappler,%20Ulrike&rft.date=2013-03-01&rft.volume=70&rft.issue=6&rft.spage=977&rft.epage=992&rft.pages=977-992&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-012-1098-y&rft_dat=%3Cproquest_pubme%3E2897704601%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291899532&rft_id=info:pmid/22907414&rfr_iscdi=true