The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature

Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2014-01, Vol.71 (1), p.113-142
Hauptverfasser: Chatakun, P., Núñez-Toldrà, R., Díaz López, E. J., Gil-Recio, C., Martínez-Sarrà, E., Hernández-Alfaro, F., Ferrés-Padró, E., Giner-Tarrida, L., Atari, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 1
container_start_page 113
container_title Cellular and molecular life sciences : CMLS
container_volume 71
creator Chatakun, P.
Núñez-Toldrà, R.
Díaz López, E. J.
Gil-Recio, C.
Martínez-Sarrà, E.
Hernández-Alfaro, F.
Ferrés-Padró, E.
Giner-Tarrida, L.
Atari, M.
description Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.
doi_str_mv 10.1007/s00018-013-1326-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11113514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492653624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-6e513a41e0ab2a5838c2d01b389c71d3b1b548d1293cbec1e3b255f39f6cd62c3</originalsourceid><addsrcrecordid>eNqNks9rFTEQx4Motlb_AC8S8OJlNZNsslkvUkr9AQUvFbyFbHbSpuzbPJPsE8_-4836nqUKgrkkzHzmO5PkS8hzYK-Bse5NZoyBbhiIBgRXDXtAjqHlrOlZBw8PZ6X51yPyJOebCkvN1WNyxIVUmnF5TH5eXiNF79EVGj31YYd0m2LBMGcaZ5oLbqjDacp0yThSHxONNRiHyeZCx1BLE84l2BIqbudxLZ9Cjf6KvKWWuiWtCE24C_h9bVNq0ymUlVkSPiWPvJ0yPjvsJ-TL-_PLs4_NxecPn85OLxoneVcahRKEbQGZHbiVWmjHRwaD0L3rYBQDDLLVI_BeuAEdoBi4lF70XrlRcSdOyLu97nYZNji6OlOyk9mmsLHph4k2mD8zc7g2V3FnoC4hoa0Krw4KKX5bMBezCXl9HTtjXLKBtudKCsX_C2Udlz2TFX35F3oTlzTXp6hUJ1TfaskrBXvKpZhzQn83ODCz2sHs7WCqHcxqB8NqzYv7N76r-P3_FeB7INfUfIXpXut_qt4CkMXCLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473694852</pqid></control><display><type>article</type><title>The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Chatakun, P. ; Núñez-Toldrà, R. ; Díaz López, E. J. ; Gil-Recio, C. ; Martínez-Sarrà, E. ; Hernández-Alfaro, F. ; Ferrés-Padró, E. ; Giner-Tarrida, L. ; Atari, M.</creator><creatorcontrib>Chatakun, P. ; Núñez-Toldrà, R. ; Díaz López, E. J. ; Gil-Recio, C. ; Martínez-Sarrà, E. ; Hernández-Alfaro, F. ; Ferrés-Padró, E. ; Giner-Tarrida, L. ; Atari, M.</creatorcontrib><description>Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-013-1326-0</identifier><identifier>PMID: 23568025</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Adhesion ; Biochemistry ; Biomaterials ; Biomedical and Life Sciences ; Biomedicine ; Bone Morphogenetic Protein 2 - metabolism ; Cell Biology ; Cell Differentiation ; Dental Pulp - cytology ; Fibronectins - metabolism ; Gene expression ; Humans ; Integrin-Binding Sialoprotein - metabolism ; Life Sciences ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mineralization ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteogenesis ; Osteopontin - metabolism ; Polymers ; Pore size ; Proteins ; Review ; Signal transduction ; Stem cells ; Tenascin - metabolism ; Tissue engineering</subject><ispartof>Cellular and molecular life sciences : CMLS, 2014-01, Vol.71 (1), p.113-142</ispartof><rights>Springer Basel 2013</rights><rights>Springer Basel 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-6e513a41e0ab2a5838c2d01b389c71d3b1b548d1293cbec1e3b255f39f6cd62c3</citedby><cites>FETCH-LOGICAL-c527t-6e513a41e0ab2a5838c2d01b389c71d3b1b548d1293cbec1e3b255f39f6cd62c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113514/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113514/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23568025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatakun, P.</creatorcontrib><creatorcontrib>Núñez-Toldrà, R.</creatorcontrib><creatorcontrib>Díaz López, E. J.</creatorcontrib><creatorcontrib>Gil-Recio, C.</creatorcontrib><creatorcontrib>Martínez-Sarrà, E.</creatorcontrib><creatorcontrib>Hernández-Alfaro, F.</creatorcontrib><creatorcontrib>Ferrés-Padró, E.</creatorcontrib><creatorcontrib>Giner-Tarrida, L.</creatorcontrib><creatorcontrib>Atari, M.</creatorcontrib><title>The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.</description><subject>Adhesion</subject><subject>Biochemistry</subject><subject>Biomaterials</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone Morphogenetic Protein 2 - metabolism</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Dental Pulp - cytology</subject><subject>Fibronectins - metabolism</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Integrin-Binding Sialoprotein - metabolism</subject><subject>Life Sciences</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mineralization</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>Osteopontin - metabolism</subject><subject>Polymers</subject><subject>Pore size</subject><subject>Proteins</subject><subject>Review</subject><subject>Signal transduction</subject><subject>Stem cells</subject><subject>Tenascin - metabolism</subject><subject>Tissue engineering</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks9rFTEQx4Motlb_AC8S8OJlNZNsslkvUkr9AQUvFbyFbHbSpuzbPJPsE8_-4836nqUKgrkkzHzmO5PkS8hzYK-Bse5NZoyBbhiIBgRXDXtAjqHlrOlZBw8PZ6X51yPyJOebCkvN1WNyxIVUmnF5TH5eXiNF79EVGj31YYd0m2LBMGcaZ5oLbqjDacp0yThSHxONNRiHyeZCx1BLE84l2BIqbudxLZ9Cjf6KvKWWuiWtCE24C_h9bVNq0ymUlVkSPiWPvJ0yPjvsJ-TL-_PLs4_NxecPn85OLxoneVcahRKEbQGZHbiVWmjHRwaD0L3rYBQDDLLVI_BeuAEdoBi4lF70XrlRcSdOyLu97nYZNji6OlOyk9mmsLHph4k2mD8zc7g2V3FnoC4hoa0Krw4KKX5bMBezCXl9HTtjXLKBtudKCsX_C2Udlz2TFX35F3oTlzTXp6hUJ1TfaskrBXvKpZhzQn83ODCz2sHs7WCqHcxqB8NqzYv7N76r-P3_FeB7INfUfIXpXut_qt4CkMXCLA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Chatakun, P.</creator><creator>Núñez-Toldrà, R.</creator><creator>Díaz López, E. J.</creator><creator>Gil-Recio, C.</creator><creator>Martínez-Sarrà, E.</creator><creator>Hernández-Alfaro, F.</creator><creator>Ferrés-Padró, E.</creator><creator>Giner-Tarrida, L.</creator><creator>Atari, M.</creator><general>Springer Basel</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature</title><author>Chatakun, P. ; Núñez-Toldrà, R. ; Díaz López, E. J. ; Gil-Recio, C. ; Martínez-Sarrà, E. ; Hernández-Alfaro, F. ; Ferrés-Padró, E. ; Giner-Tarrida, L. ; Atari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-6e513a41e0ab2a5838c2d01b389c71d3b1b548d1293cbec1e3b255f39f6cd62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesion</topic><topic>Biochemistry</topic><topic>Biomaterials</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone Morphogenetic Protein 2 - metabolism</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Dental Pulp - cytology</topic><topic>Fibronectins - metabolism</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Integrin-Binding Sialoprotein - metabolism</topic><topic>Life Sciences</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mineralization</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>Osteopontin - metabolism</topic><topic>Polymers</topic><topic>Pore size</topic><topic>Proteins</topic><topic>Review</topic><topic>Signal transduction</topic><topic>Stem cells</topic><topic>Tenascin - metabolism</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatakun, P.</creatorcontrib><creatorcontrib>Núñez-Toldrà, R.</creatorcontrib><creatorcontrib>Díaz López, E. J.</creatorcontrib><creatorcontrib>Gil-Recio, C.</creatorcontrib><creatorcontrib>Martínez-Sarrà, E.</creatorcontrib><creatorcontrib>Hernández-Alfaro, F.</creatorcontrib><creatorcontrib>Ferrés-Padró, E.</creatorcontrib><creatorcontrib>Giner-Tarrida, L.</creatorcontrib><creatorcontrib>Atari, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatakun, P.</au><au>Núñez-Toldrà, R.</au><au>Díaz López, E. J.</au><au>Gil-Recio, C.</au><au>Martínez-Sarrà, E.</au><au>Hernández-Alfaro, F.</au><au>Ferrés-Padró, E.</au><au>Giner-Tarrida, L.</au><au>Atari, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>71</volume><issue>1</issue><spage>113</spage><epage>142</epage><pages>113-142</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.</abstract><cop>Basel</cop><pub>Springer Basel</pub><pmid>23568025</pmid><doi>10.1007/s00018-013-1326-0</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2014-01, Vol.71 (1), p.113-142
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11113514
source MEDLINE; SpringerNature Journals; PubMed Central
subjects Adhesion
Biochemistry
Biomaterials
Biomedical and Life Sciences
Biomedicine
Bone Morphogenetic Protein 2 - metabolism
Cell Biology
Cell Differentiation
Dental Pulp - cytology
Fibronectins - metabolism
Gene expression
Humans
Integrin-Binding Sialoprotein - metabolism
Life Sciences
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Mineralization
Osteoblasts - cytology
Osteoblasts - metabolism
Osteogenesis
Osteopontin - metabolism
Polymers
Pore size
Proteins
Review
Signal transduction
Stem cells
Tenascin - metabolism
Tissue engineering
title The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20five%20proteins%20on%20stem%20cells%20used%20for%20osteoblast%20differentiation%20and%20proliferation:%20a%20current%20review%20of%20the%20literature&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Chatakun,%20P.&rft.date=2014-01-01&rft.volume=71&rft.issue=1&rft.spage=113&rft.epage=142&rft.pages=113-142&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-013-1326-0&rft_dat=%3Cproquest_pubme%3E1492653624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473694852&rft_id=info:pmid/23568025&rfr_iscdi=true