CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor
Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2017-03, Vol.74 (5), p.937-950 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 950 |
---|---|
container_issue | 5 |
container_start_page | 937 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 74 |
creator | Eraso-Pichot, A. Larramona-Arcas, R. Vicario-Orri, E. Villalonga, R. Pardo, L. Galea, E. Masgrau, R. |
description | Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons, long-term adaptive astrocyte plasticity has not been described. Here, we investigated whether the transcription factor CREB mediates adaptive plasticity-like phenomena in astrocytes. We found that activation of CREB-dependent transcription reduced the calcium responses induced by ATP, noradrenaline, or endothelin-1. As to the mechanism, expression of VP16-CREB, a constitutively active CREB mutant, had no effect on basal cytosolic calcium levels, extracellular calcium entry, or calcium mobilization from lysosomal-related acidic stores. Rather, VP16-CREB upregulated sigma-1 receptor expression thereby increasing the release of calcium from the endoplasmic reticulum and its uptake by mitochondria. Sigma-1 receptor was also upregulated in vivo upon VP16-CREB expression in astrocytes. We conclude that CREB decreases astrocyte responsiveness by increasing calcium signalling at the endoplasmic reticulum–mitochondria interface, which might be an astrocyte-based form of long-term depression. |
doi_str_mv | 10.1007/s00018-016-2397-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11107612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4313358881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-e096b26e2494e96e9ba256dc594c83e41203815fd039f2fa07b1f8a5380906c23</originalsourceid><addsrcrecordid>eNp1kU-L1TAUxYsozjj6AdxIwI2b6r1pkzYrcR7jjDAgiIK7kKa3nQz980zSYfrtTXnPYRRcJXB_59ycnCx7jfAeAaoPAQCwzgFlzgtV5eJJdoolh1xBhU-Pd1nznyfZixBuEyxqLp9nJ7yqJApVnGb97tvFOWvJejKBAjMh-tmu0VlG99ZF07jBxZU1Kxvn1nWrm3oWlsbSMCyD8cyawbplZN2w3Cf9nTMs3hALrh9NjsyTpX2c_cvsWWeGQK-O51n24_PF991Vfv318svu03VuywpjTqBkwyXxUpWkJKnGcCFbK1Rp64JK5FDUKLoWCtXxzkDVYFcbUdSgQFpenGUfD777pRmptTRFbwa99240ftWzcfrvyeRudD_faUSE9Cmbw7ujg59_LRSiHl3Y4pqJ5iVorAsh0jbAhL79B72dFz-lfImSlSqgFpshHijr5xA8dQ-vQdBbj_rQo0496q1HLZLmzeMYD4o_xSWAH4CQRlNP_tHq_7r-Bi6AqS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867930852</pqid></control><display><type>article</type><title>CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor</title><source>MEDLINE</source><source>Springer Online Journals</source><source>PubMed Central</source><creator>Eraso-Pichot, A. ; Larramona-Arcas, R. ; Vicario-Orri, E. ; Villalonga, R. ; Pardo, L. ; Galea, E. ; Masgrau, R.</creator><creatorcontrib>Eraso-Pichot, A. ; Larramona-Arcas, R. ; Vicario-Orri, E. ; Villalonga, R. ; Pardo, L. ; Galea, E. ; Masgrau, R.</creatorcontrib><description>Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons, long-term adaptive astrocyte plasticity has not been described. Here, we investigated whether the transcription factor CREB mediates adaptive plasticity-like phenomena in astrocytes. We found that activation of CREB-dependent transcription reduced the calcium responses induced by ATP, noradrenaline, or endothelin-1. As to the mechanism, expression of VP16-CREB, a constitutively active CREB mutant, had no effect on basal cytosolic calcium levels, extracellular calcium entry, or calcium mobilization from lysosomal-related acidic stores. Rather, VP16-CREB upregulated sigma-1 receptor expression thereby increasing the release of calcium from the endoplasmic reticulum and its uptake by mitochondria. Sigma-1 receptor was also upregulated in vivo upon VP16-CREB expression in astrocytes. We conclude that CREB decreases astrocyte responsiveness by increasing calcium signalling at the endoplasmic reticulum–mitochondria interface, which might be an astrocyte-based form of long-term depression.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-016-2397-5</identifier><identifier>PMID: 27761593</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aging - metabolism ; Animals ; Astrocytes - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Calcium ; Calcium - metabolism ; Calcium Signaling ; Cell Biology ; Cyclic AMP Response Element-Binding Protein - metabolism ; Cytosol - metabolism ; Gene expression ; Life Sciences ; Mice, Transgenic ; Mitochondria ; Mitochondria - metabolism ; Neurons ; Neurotransmitter Agents - metabolism ; Original ; Original Article ; Plasticity ; Rats, Sprague-Dawley ; Receptors, sigma - metabolism ; Sigma-1 Receptor ; Signal transduction ; Subcellular Fractions - metabolism ; Transcription, Genetic ; Up-Regulation</subject><ispartof>Cellular and molecular life sciences : CMLS, 2017-03, Vol.74 (5), p.937-950</ispartof><rights>Springer International Publishing 2016</rights><rights>Cellular and Molecular Life Sciences is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-e096b26e2494e96e9ba256dc594c83e41203815fd039f2fa07b1f8a5380906c23</citedby><cites>FETCH-LOGICAL-c471t-e096b26e2494e96e9ba256dc594c83e41203815fd039f2fa07b1f8a5380906c23</cites><orcidid>0000-0002-6722-5939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107612/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107612/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27761593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eraso-Pichot, A.</creatorcontrib><creatorcontrib>Larramona-Arcas, R.</creatorcontrib><creatorcontrib>Vicario-Orri, E.</creatorcontrib><creatorcontrib>Villalonga, R.</creatorcontrib><creatorcontrib>Pardo, L.</creatorcontrib><creatorcontrib>Galea, E.</creatorcontrib><creatorcontrib>Masgrau, R.</creatorcontrib><title>CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons, long-term adaptive astrocyte plasticity has not been described. Here, we investigated whether the transcription factor CREB mediates adaptive plasticity-like phenomena in astrocytes. We found that activation of CREB-dependent transcription reduced the calcium responses induced by ATP, noradrenaline, or endothelin-1. As to the mechanism, expression of VP16-CREB, a constitutively active CREB mutant, had no effect on basal cytosolic calcium levels, extracellular calcium entry, or calcium mobilization from lysosomal-related acidic stores. Rather, VP16-CREB upregulated sigma-1 receptor expression thereby increasing the release of calcium from the endoplasmic reticulum and its uptake by mitochondria. Sigma-1 receptor was also upregulated in vivo upon VP16-CREB expression in astrocytes. We conclude that CREB decreases astrocyte responsiveness by increasing calcium signalling at the endoplasmic reticulum–mitochondria interface, which might be an astrocyte-based form of long-term depression.</description><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Astrocytes - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling</subject><subject>Cell Biology</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>Cytosol - metabolism</subject><subject>Gene expression</subject><subject>Life Sciences</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Neurons</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Original</subject><subject>Original Article</subject><subject>Plasticity</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, sigma - metabolism</subject><subject>Sigma-1 Receptor</subject><subject>Signal transduction</subject><subject>Subcellular Fractions - metabolism</subject><subject>Transcription, Genetic</subject><subject>Up-Regulation</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU-L1TAUxYsozjj6AdxIwI2b6r1pkzYrcR7jjDAgiIK7kKa3nQz980zSYfrtTXnPYRRcJXB_59ycnCx7jfAeAaoPAQCwzgFlzgtV5eJJdoolh1xBhU-Pd1nznyfZixBuEyxqLp9nJ7yqJApVnGb97tvFOWvJejKBAjMh-tmu0VlG99ZF07jBxZU1Kxvn1nWrm3oWlsbSMCyD8cyawbplZN2w3Cf9nTMs3hALrh9NjsyTpX2c_cvsWWeGQK-O51n24_PF991Vfv318svu03VuywpjTqBkwyXxUpWkJKnGcCFbK1Rp64JK5FDUKLoWCtXxzkDVYFcbUdSgQFpenGUfD777pRmptTRFbwa99240ftWzcfrvyeRudD_faUSE9Cmbw7ujg59_LRSiHl3Y4pqJ5iVorAsh0jbAhL79B72dFz-lfImSlSqgFpshHijr5xA8dQ-vQdBbj_rQo0496q1HLZLmzeMYD4o_xSWAH4CQRlNP_tHq_7r-Bi6AqS8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Eraso-Pichot, A.</creator><creator>Larramona-Arcas, R.</creator><creator>Vicario-Orri, E.</creator><creator>Villalonga, R.</creator><creator>Pardo, L.</creator><creator>Galea, E.</creator><creator>Masgrau, R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6722-5939</orcidid></search><sort><creationdate>20170301</creationdate><title>CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor</title><author>Eraso-Pichot, A. ; Larramona-Arcas, R. ; Vicario-Orri, E. ; Villalonga, R. ; Pardo, L. ; Galea, E. ; Masgrau, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-e096b26e2494e96e9ba256dc594c83e41203815fd039f2fa07b1f8a5380906c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Astrocytes - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling</topic><topic>Cell Biology</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>Cytosol - metabolism</topic><topic>Gene expression</topic><topic>Life Sciences</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Neurons</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Original</topic><topic>Original Article</topic><topic>Plasticity</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, sigma - metabolism</topic><topic>Sigma-1 Receptor</topic><topic>Signal transduction</topic><topic>Subcellular Fractions - metabolism</topic><topic>Transcription, Genetic</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eraso-Pichot, A.</creatorcontrib><creatorcontrib>Larramona-Arcas, R.</creatorcontrib><creatorcontrib>Vicario-Orri, E.</creatorcontrib><creatorcontrib>Villalonga, R.</creatorcontrib><creatorcontrib>Pardo, L.</creatorcontrib><creatorcontrib>Galea, E.</creatorcontrib><creatorcontrib>Masgrau, R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eraso-Pichot, A.</au><au>Larramona-Arcas, R.</au><au>Vicario-Orri, E.</au><au>Villalonga, R.</au><au>Pardo, L.</au><au>Galea, E.</au><au>Masgrau, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>74</volume><issue>5</issue><spage>937</spage><epage>950</epage><pages>937-950</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons, long-term adaptive astrocyte plasticity has not been described. Here, we investigated whether the transcription factor CREB mediates adaptive plasticity-like phenomena in astrocytes. We found that activation of CREB-dependent transcription reduced the calcium responses induced by ATP, noradrenaline, or endothelin-1. As to the mechanism, expression of VP16-CREB, a constitutively active CREB mutant, had no effect on basal cytosolic calcium levels, extracellular calcium entry, or calcium mobilization from lysosomal-related acidic stores. Rather, VP16-CREB upregulated sigma-1 receptor expression thereby increasing the release of calcium from the endoplasmic reticulum and its uptake by mitochondria. Sigma-1 receptor was also upregulated in vivo upon VP16-CREB expression in astrocytes. We conclude that CREB decreases astrocyte responsiveness by increasing calcium signalling at the endoplasmic reticulum–mitochondria interface, which might be an astrocyte-based form of long-term depression.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>27761593</pmid><doi>10.1007/s00018-016-2397-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6722-5939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2017-03, Vol.74 (5), p.937-950 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11107612 |
source | MEDLINE; Springer Online Journals; PubMed Central |
subjects | Aging - metabolism Animals Astrocytes - metabolism Biochemistry Biomedical and Life Sciences Biomedicine Calcium Calcium - metabolism Calcium Signaling Cell Biology Cyclic AMP Response Element-Binding Protein - metabolism Cytosol - metabolism Gene expression Life Sciences Mice, Transgenic Mitochondria Mitochondria - metabolism Neurons Neurotransmitter Agents - metabolism Original Original Article Plasticity Rats, Sprague-Dawley Receptors, sigma - metabolism Sigma-1 Receptor Signal transduction Subcellular Fractions - metabolism Transcription, Genetic Up-Regulation |
title | CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CREB%20decreases%20astrocytic%20excitability%20by%20modifying%20subcellular%20calcium%20fluxes%20via%20the%20sigma-1%20receptor&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Eraso-Pichot,%20A.&rft.date=2017-03-01&rft.volume=74&rft.issue=5&rft.spage=937&rft.epage=950&rft.pages=937-950&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-016-2397-5&rft_dat=%3Cproquest_pubme%3E4313358881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867930852&rft_id=info:pmid/27761593&rfr_iscdi=true |