Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy
Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic eff...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-05, Vol.16 (19), p.24172-24190 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24190 |
---|---|
container_issue | 19 |
container_start_page | 24172 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Dirersa, Worku Batu Kan, Tzu-Chun Chang, Jungshan Getachew, Girum Ochirbat, Sonjid Kizhepat, Shamsa Wibrianto, Aswandi Rasal, Akash Chen, Hung-An Ghule, Anil Vithal Chou, Tzung-Han Chang, Jia-Yaw |
description | Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design Ru x Cu1–x O2–Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru–Cu peroxide nanodots (Ru x Cu1–x O2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru–Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis’s acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo. |
doi_str_mv | 10.1021/acsami.3c18888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11103653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153553383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-d119b1c3197dae442ce9e8fbba4a7f2ee91fafd0309eea1006e3379c4accbe553</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiNERT_gytlHhJTWYyebhAtCq0KR-iV2kbhZE2eydZXYwU5W5Nb_gPiD_JK62lUlbvgwtsav35nxkyRvgZ8CF3CGOmBvTqWGMq4XyRFUWZaWIhcvn89Zdpgch3DP-UIKnr9KDmW5KEsuiqPkz7ndGEvkjd2wC3Ej2Iq6Nl1Nw9DNT7nbDsfW-Z7FwH40s43lNFvfkcfBUGBbg-zb9Pfh93Jit-TdL9MQu0brNHpvyH9g66mPT6-M9o7s1nhne7JjekWNwZEatpot-Y0J47Pv_Do5aLEL9Ga_nyTfP5-vlxfp5c2Xr8tPlynKXIxpA1DVoCVURYOUZUJTRWVb15hh0QqiClpsGy55RYQQ5ycpi0pnqHVNeS5Pko8732Gqe2p07MtjpwZvevSzcmjUvzfW3KmN2yoA4HKRy-jwbu_g3c-Jwqh6EzR1HVpyU1ASchkLyfI_pDyrCiiAQ5S-30kjXnXvJm_jLyjg6om52jFXe-byETPwpHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049717101</pqid></control><display><type>article</type><title>Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy</title><source>ACS Publications</source><creator>Dirersa, Worku Batu ; Kan, Tzu-Chun ; Chang, Jungshan ; Getachew, Girum ; Ochirbat, Sonjid ; Kizhepat, Shamsa ; Wibrianto, Aswandi ; Rasal, Akash ; Chen, Hung-An ; Ghule, Anil Vithal ; Chou, Tzung-Han ; Chang, Jia-Yaw</creator><creatorcontrib>Dirersa, Worku Batu ; Kan, Tzu-Chun ; Chang, Jungshan ; Getachew, Girum ; Ochirbat, Sonjid ; Kizhepat, Shamsa ; Wibrianto, Aswandi ; Rasal, Akash ; Chen, Hung-An ; Ghule, Anil Vithal ; Chou, Tzung-Han ; Chang, Jia-Yaw</creatorcontrib><description>Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design Ru x Cu1–x O2–Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru–Cu peroxide nanodots (Ru x Cu1–x O2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru–Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis’s acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c18888</identifier><identifier>PMID: 38688027</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>adsorption ; apoptosis ; Biological and Medical Applications of Materials and Interfaces ; catalytic activity ; chlorine ; dispersibility ; drug therapy ; fluorescence ; glutathione ; hyaluronic acid ; hydroxyl radicals ; hypoxia ; nanocarriers ; neoplasms ; oxygen ; singlet oxygen</subject><ispartof>ACS applied materials & interfaces, 2024-05, Vol.16 (19), p.24172-24190</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8162-3802 ; 0000-0002-4172-6612 ; 0000-0003-4630-7772 ; 0000-0002-9537-064X ; 0000-0003-0054-0712 ; 0000-0003-4792-3286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c18888$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c18888$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Dirersa, Worku Batu</creatorcontrib><creatorcontrib>Kan, Tzu-Chun</creatorcontrib><creatorcontrib>Chang, Jungshan</creatorcontrib><creatorcontrib>Getachew, Girum</creatorcontrib><creatorcontrib>Ochirbat, Sonjid</creatorcontrib><creatorcontrib>Kizhepat, Shamsa</creatorcontrib><creatorcontrib>Wibrianto, Aswandi</creatorcontrib><creatorcontrib>Rasal, Akash</creatorcontrib><creatorcontrib>Chen, Hung-An</creatorcontrib><creatorcontrib>Ghule, Anil Vithal</creatorcontrib><creatorcontrib>Chou, Tzung-Han</creatorcontrib><creatorcontrib>Chang, Jia-Yaw</creatorcontrib><title>Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design Ru x Cu1–x O2–Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru–Cu peroxide nanodots (Ru x Cu1–x O2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru–Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis’s acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.</description><subject>adsorption</subject><subject>apoptosis</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>catalytic activity</subject><subject>chlorine</subject><subject>dispersibility</subject><subject>drug therapy</subject><subject>fluorescence</subject><subject>glutathione</subject><subject>hyaluronic acid</subject><subject>hydroxyl radicals</subject><subject>hypoxia</subject><subject>nanocarriers</subject><subject>neoplasms</subject><subject>oxygen</subject><subject>singlet oxygen</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiNERT_gytlHhJTWYyebhAtCq0KR-iV2kbhZE2eydZXYwU5W5Nb_gPiD_JK62lUlbvgwtsav35nxkyRvgZ8CF3CGOmBvTqWGMq4XyRFUWZaWIhcvn89Zdpgch3DP-UIKnr9KDmW5KEsuiqPkz7ndGEvkjd2wC3Ej2Iq6Nl1Nw9DNT7nbDsfW-Z7FwH40s43lNFvfkcfBUGBbg-zb9Pfh93Jit-TdL9MQu0brNHpvyH9g66mPT6-M9o7s1nhne7JjekWNwZEatpot-Y0J47Pv_Do5aLEL9Ga_nyTfP5-vlxfp5c2Xr8tPlynKXIxpA1DVoCVURYOUZUJTRWVb15hh0QqiClpsGy55RYQQ5ycpi0pnqHVNeS5Pko8732Gqe2p07MtjpwZvevSzcmjUvzfW3KmN2yoA4HKRy-jwbu_g3c-Jwqh6EzR1HVpyU1ASchkLyfI_pDyrCiiAQ5S-30kjXnXvJm_jLyjg6om52jFXe-byETPwpHA</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Dirersa, Worku Batu</creator><creator>Kan, Tzu-Chun</creator><creator>Chang, Jungshan</creator><creator>Getachew, Girum</creator><creator>Ochirbat, Sonjid</creator><creator>Kizhepat, Shamsa</creator><creator>Wibrianto, Aswandi</creator><creator>Rasal, Akash</creator><creator>Chen, Hung-An</creator><creator>Ghule, Anil Vithal</creator><creator>Chou, Tzung-Han</creator><creator>Chang, Jia-Yaw</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8162-3802</orcidid><orcidid>https://orcid.org/0000-0002-4172-6612</orcidid><orcidid>https://orcid.org/0000-0003-4630-7772</orcidid><orcidid>https://orcid.org/0000-0002-9537-064X</orcidid><orcidid>https://orcid.org/0000-0003-0054-0712</orcidid><orcidid>https://orcid.org/0000-0003-4792-3286</orcidid></search><sort><creationdate>20240515</creationdate><title>Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy</title><author>Dirersa, Worku Batu ; Kan, Tzu-Chun ; Chang, Jungshan ; Getachew, Girum ; Ochirbat, Sonjid ; Kizhepat, Shamsa ; Wibrianto, Aswandi ; Rasal, Akash ; Chen, Hung-An ; Ghule, Anil Vithal ; Chou, Tzung-Han ; Chang, Jia-Yaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-d119b1c3197dae442ce9e8fbba4a7f2ee91fafd0309eea1006e3379c4accbe553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adsorption</topic><topic>apoptosis</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>catalytic activity</topic><topic>chlorine</topic><topic>dispersibility</topic><topic>drug therapy</topic><topic>fluorescence</topic><topic>glutathione</topic><topic>hyaluronic acid</topic><topic>hydroxyl radicals</topic><topic>hypoxia</topic><topic>nanocarriers</topic><topic>neoplasms</topic><topic>oxygen</topic><topic>singlet oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dirersa, Worku Batu</creatorcontrib><creatorcontrib>Kan, Tzu-Chun</creatorcontrib><creatorcontrib>Chang, Jungshan</creatorcontrib><creatorcontrib>Getachew, Girum</creatorcontrib><creatorcontrib>Ochirbat, Sonjid</creatorcontrib><creatorcontrib>Kizhepat, Shamsa</creatorcontrib><creatorcontrib>Wibrianto, Aswandi</creatorcontrib><creatorcontrib>Rasal, Akash</creatorcontrib><creatorcontrib>Chen, Hung-An</creatorcontrib><creatorcontrib>Ghule, Anil Vithal</creatorcontrib><creatorcontrib>Chou, Tzung-Han</creatorcontrib><creatorcontrib>Chang, Jia-Yaw</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dirersa, Worku Batu</au><au>Kan, Tzu-Chun</au><au>Chang, Jungshan</au><au>Getachew, Girum</au><au>Ochirbat, Sonjid</au><au>Kizhepat, Shamsa</au><au>Wibrianto, Aswandi</au><au>Rasal, Akash</au><au>Chen, Hung-An</au><au>Ghule, Anil Vithal</au><au>Chou, Tzung-Han</au><au>Chang, Jia-Yaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><spage>24172</spage><epage>24190</epage><pages>24172-24190</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design Ru x Cu1–x O2–Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru–Cu peroxide nanodots (Ru x Cu1–x O2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru–Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis’s acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.</abstract><pub>American Chemical Society</pub><pmid>38688027</pmid><doi>10.1021/acsami.3c18888</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8162-3802</orcidid><orcidid>https://orcid.org/0000-0002-4172-6612</orcidid><orcidid>https://orcid.org/0000-0003-4630-7772</orcidid><orcidid>https://orcid.org/0000-0002-9537-064X</orcidid><orcidid>https://orcid.org/0000-0003-0054-0712</orcidid><orcidid>https://orcid.org/0000-0003-4792-3286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-05, Vol.16 (19), p.24172-24190 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11103653 |
source | ACS Publications |
subjects | adsorption apoptosis Biological and Medical Applications of Materials and Interfaces catalytic activity chlorine dispersibility drug therapy fluorescence glutathione hyaluronic acid hydroxyl radicals hypoxia nanocarriers neoplasms oxygen singlet oxygen |
title | Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20H2O2%20Self-Supplying%20Platform%20for%20Xdynamic%20Therapies%20via%20Ru%E2%80%93Cu%20Peroxide%20Nanocarrier:%20Tumor%20Microenvironment-Mediated%20Synergistic%20Therapy&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dirersa,%20Worku%20Batu&rft.date=2024-05-15&rft.volume=16&rft.issue=19&rft.spage=24172&rft.epage=24190&rft.pages=24172-24190&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c18888&rft_dat=%3Cproquest_pubme%3E3153553383%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049717101&rft_id=info:pmid/38688027&rfr_iscdi=true |