Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy

Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (19), p.24172-24190
Hauptverfasser: Dirersa, Worku Batu, Kan, Tzu-Chun, Chang, Jungshan, Getachew, Girum, Ochirbat, Sonjid, Kizhepat, Shamsa, Wibrianto, Aswandi, Rasal, Akash, Chen, Hung-An, Ghule, Anil Vithal, Chou, Tzung-Han, Chang, Jia-Yaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24190
container_issue 19
container_start_page 24172
container_title ACS applied materials & interfaces
container_volume 16
creator Dirersa, Worku Batu
Kan, Tzu-Chun
Chang, Jungshan
Getachew, Girum
Ochirbat, Sonjid
Kizhepat, Shamsa
Wibrianto, Aswandi
Rasal, Akash
Chen, Hung-An
Ghule, Anil Vithal
Chou, Tzung-Han
Chang, Jia-Yaw
description Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design Ru x Cu1–x O2–Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru–Cu peroxide nanodots (Ru x Cu1–x O2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru–Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis’s acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.
doi_str_mv 10.1021/acsami.3c18888
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11103653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153553383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-d119b1c3197dae442ce9e8fbba4a7f2ee91fafd0309eea1006e3379c4accbe553</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiNERT_gytlHhJTWYyebhAtCq0KR-iV2kbhZE2eydZXYwU5W5Nb_gPiD_JK62lUlbvgwtsav35nxkyRvgZ8CF3CGOmBvTqWGMq4XyRFUWZaWIhcvn89Zdpgch3DP-UIKnr9KDmW5KEsuiqPkz7ndGEvkjd2wC3Ej2Iq6Nl1Nw9DNT7nbDsfW-Z7FwH40s43lNFvfkcfBUGBbg-zb9Pfh93Jit-TdL9MQu0brNHpvyH9g66mPT6-M9o7s1nhne7JjekWNwZEatpot-Y0J47Pv_Do5aLEL9Ga_nyTfP5-vlxfp5c2Xr8tPlynKXIxpA1DVoCVURYOUZUJTRWVb15hh0QqiClpsGy55RYQQ5ycpi0pnqHVNeS5Pko8732Gqe2p07MtjpwZvevSzcmjUvzfW3KmN2yoA4HKRy-jwbu_g3c-Jwqh6EzR1HVpyU1ASchkLyfI_pDyrCiiAQ5S-30kjXnXvJm_jLyjg6om52jFXe-byETPwpHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049717101</pqid></control><display><type>article</type><title>Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy</title><source>ACS Publications</source><creator>Dirersa, Worku Batu ; Kan, Tzu-Chun ; Chang, Jungshan ; Getachew, Girum ; Ochirbat, Sonjid ; Kizhepat, Shamsa ; Wibrianto, Aswandi ; Rasal, Akash ; Chen, Hung-An ; Ghule, Anil Vithal ; Chou, Tzung-Han ; Chang, Jia-Yaw</creator><creatorcontrib>Dirersa, Worku Batu ; Kan, Tzu-Chun ; Chang, Jungshan ; Getachew, Girum ; Ochirbat, Sonjid ; Kizhepat, Shamsa ; Wibrianto, Aswandi ; Rasal, Akash ; Chen, Hung-An ; Ghule, Anil Vithal ; Chou, Tzung-Han ; Chang, Jia-Yaw</creatorcontrib><description>Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design Ru x Cu1–x O2–Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru–Cu peroxide nanodots (Ru x Cu1–x O2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru–Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis’s acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c18888</identifier><identifier>PMID: 38688027</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>adsorption ; apoptosis ; Biological and Medical Applications of Materials and Interfaces ; catalytic activity ; chlorine ; dispersibility ; drug therapy ; fluorescence ; glutathione ; hyaluronic acid ; hydroxyl radicals ; hypoxia ; nanocarriers ; neoplasms ; oxygen ; singlet oxygen</subject><ispartof>ACS applied materials &amp; interfaces, 2024-05, Vol.16 (19), p.24172-24190</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8162-3802 ; 0000-0002-4172-6612 ; 0000-0003-4630-7772 ; 0000-0002-9537-064X ; 0000-0003-0054-0712 ; 0000-0003-4792-3286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c18888$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c18888$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Dirersa, Worku Batu</creatorcontrib><creatorcontrib>Kan, Tzu-Chun</creatorcontrib><creatorcontrib>Chang, Jungshan</creatorcontrib><creatorcontrib>Getachew, Girum</creatorcontrib><creatorcontrib>Ochirbat, Sonjid</creatorcontrib><creatorcontrib>Kizhepat, Shamsa</creatorcontrib><creatorcontrib>Wibrianto, Aswandi</creatorcontrib><creatorcontrib>Rasal, Akash</creatorcontrib><creatorcontrib>Chen, Hung-An</creatorcontrib><creatorcontrib>Ghule, Anil Vithal</creatorcontrib><creatorcontrib>Chou, Tzung-Han</creatorcontrib><creatorcontrib>Chang, Jia-Yaw</creatorcontrib><title>Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design Ru x Cu1–x O2–Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru–Cu peroxide nanodots (Ru x Cu1–x O2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru–Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis’s acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.</description><subject>adsorption</subject><subject>apoptosis</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>catalytic activity</subject><subject>chlorine</subject><subject>dispersibility</subject><subject>drug therapy</subject><subject>fluorescence</subject><subject>glutathione</subject><subject>hyaluronic acid</subject><subject>hydroxyl radicals</subject><subject>hypoxia</subject><subject>nanocarriers</subject><subject>neoplasms</subject><subject>oxygen</subject><subject>singlet oxygen</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiNERT_gytlHhJTWYyebhAtCq0KR-iV2kbhZE2eydZXYwU5W5Nb_gPiD_JK62lUlbvgwtsav35nxkyRvgZ8CF3CGOmBvTqWGMq4XyRFUWZaWIhcvn89Zdpgch3DP-UIKnr9KDmW5KEsuiqPkz7ndGEvkjd2wC3Ej2Iq6Nl1Nw9DNT7nbDsfW-Z7FwH40s43lNFvfkcfBUGBbg-zb9Pfh93Jit-TdL9MQu0brNHpvyH9g66mPT6-M9o7s1nhne7JjekWNwZEatpot-Y0J47Pv_Do5aLEL9Ga_nyTfP5-vlxfp5c2Xr8tPlynKXIxpA1DVoCVURYOUZUJTRWVb15hh0QqiClpsGy55RYQQ5ycpi0pnqHVNeS5Pko8732Gqe2p07MtjpwZvevSzcmjUvzfW3KmN2yoA4HKRy-jwbu_g3c-Jwqh6EzR1HVpyU1ASchkLyfI_pDyrCiiAQ5S-30kjXnXvJm_jLyjg6om52jFXe-byETPwpHA</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Dirersa, Worku Batu</creator><creator>Kan, Tzu-Chun</creator><creator>Chang, Jungshan</creator><creator>Getachew, Girum</creator><creator>Ochirbat, Sonjid</creator><creator>Kizhepat, Shamsa</creator><creator>Wibrianto, Aswandi</creator><creator>Rasal, Akash</creator><creator>Chen, Hung-An</creator><creator>Ghule, Anil Vithal</creator><creator>Chou, Tzung-Han</creator><creator>Chang, Jia-Yaw</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8162-3802</orcidid><orcidid>https://orcid.org/0000-0002-4172-6612</orcidid><orcidid>https://orcid.org/0000-0003-4630-7772</orcidid><orcidid>https://orcid.org/0000-0002-9537-064X</orcidid><orcidid>https://orcid.org/0000-0003-0054-0712</orcidid><orcidid>https://orcid.org/0000-0003-4792-3286</orcidid></search><sort><creationdate>20240515</creationdate><title>Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy</title><author>Dirersa, Worku Batu ; Kan, Tzu-Chun ; Chang, Jungshan ; Getachew, Girum ; Ochirbat, Sonjid ; Kizhepat, Shamsa ; Wibrianto, Aswandi ; Rasal, Akash ; Chen, Hung-An ; Ghule, Anil Vithal ; Chou, Tzung-Han ; Chang, Jia-Yaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-d119b1c3197dae442ce9e8fbba4a7f2ee91fafd0309eea1006e3379c4accbe553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adsorption</topic><topic>apoptosis</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>catalytic activity</topic><topic>chlorine</topic><topic>dispersibility</topic><topic>drug therapy</topic><topic>fluorescence</topic><topic>glutathione</topic><topic>hyaluronic acid</topic><topic>hydroxyl radicals</topic><topic>hypoxia</topic><topic>nanocarriers</topic><topic>neoplasms</topic><topic>oxygen</topic><topic>singlet oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dirersa, Worku Batu</creatorcontrib><creatorcontrib>Kan, Tzu-Chun</creatorcontrib><creatorcontrib>Chang, Jungshan</creatorcontrib><creatorcontrib>Getachew, Girum</creatorcontrib><creatorcontrib>Ochirbat, Sonjid</creatorcontrib><creatorcontrib>Kizhepat, Shamsa</creatorcontrib><creatorcontrib>Wibrianto, Aswandi</creatorcontrib><creatorcontrib>Rasal, Akash</creatorcontrib><creatorcontrib>Chen, Hung-An</creatorcontrib><creatorcontrib>Ghule, Anil Vithal</creatorcontrib><creatorcontrib>Chou, Tzung-Han</creatorcontrib><creatorcontrib>Chang, Jia-Yaw</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dirersa, Worku Batu</au><au>Kan, Tzu-Chun</au><au>Chang, Jungshan</au><au>Getachew, Girum</au><au>Ochirbat, Sonjid</au><au>Kizhepat, Shamsa</au><au>Wibrianto, Aswandi</au><au>Rasal, Akash</au><au>Chen, Hung-An</au><au>Ghule, Anil Vithal</au><au>Chou, Tzung-Han</au><au>Chang, Jia-Yaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><spage>24172</spage><epage>24190</epage><pages>24172-24190</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design Ru x Cu1–x O2–Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru–Cu peroxide nanodots (Ru x Cu1–x O2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru–Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis’s acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.</abstract><pub>American Chemical Society</pub><pmid>38688027</pmid><doi>10.1021/acsami.3c18888</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8162-3802</orcidid><orcidid>https://orcid.org/0000-0002-4172-6612</orcidid><orcidid>https://orcid.org/0000-0003-4630-7772</orcidid><orcidid>https://orcid.org/0000-0002-9537-064X</orcidid><orcidid>https://orcid.org/0000-0003-0054-0712</orcidid><orcidid>https://orcid.org/0000-0003-4792-3286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-05, Vol.16 (19), p.24172-24190
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11103653
source ACS Publications
subjects adsorption
apoptosis
Biological and Medical Applications of Materials and Interfaces
catalytic activity
chlorine
dispersibility
drug therapy
fluorescence
glutathione
hyaluronic acid
hydroxyl radicals
hypoxia
nanocarriers
neoplasms
oxygen
singlet oxygen
title Engineering H2O2 Self-Supplying Platform for Xdynamic Therapies via Ru–Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20H2O2%20Self-Supplying%20Platform%20for%20Xdynamic%20Therapies%20via%20Ru%E2%80%93Cu%20Peroxide%20Nanocarrier:%20Tumor%20Microenvironment-Mediated%20Synergistic%20Therapy&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dirersa,%20Worku%20Batu&rft.date=2024-05-15&rft.volume=16&rft.issue=19&rft.spage=24172&rft.epage=24190&rft.pages=24172-24190&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c18888&rft_dat=%3Cproquest_pubme%3E3153553383%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049717101&rft_id=info:pmid/38688027&rfr_iscdi=true