Molecular Probing of the Microscopic Pressure at Contact Interfaces

Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-05, Vol.146 (19), p.13258-13265
Hauptverfasser: Hsu, Chao-Chun, Hsu, Allen Chu-Hsiang, Lin, Chun-Yen, Wong, Ken-Tsung, Bonn, Daniel, Brouwer, Albert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13265
container_issue 19
container_start_page 13258
container_title Journal of the American Chemical Society
container_volume 146
creator Hsu, Chao-Chun
Hsu, Allen Chu-Hsiang
Lin, Chun-Yen
Wong, Ken-Tsung
Bonn, Daniel
Brouwer, Albert M.
description Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV–vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.
doi_str_mv 10.1021/jacs.4c01312
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11099955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050939062</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-7a1da96420fa94394823e8b65d66fb00f48b3604e4b34e7a1b93b017486731253</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRbH3cPEuOHkydfWb3JFJ8FFr0oOdls920KWm27iaC_70J1qogeBqG-c03jw-hMwwjDARfrYyNI2YBU0z20BBzAinHROyjIQCQNJOCDtBRjKsuZUTiQzSgUiiRYTlE45mvnG0rE5Kn4POyXiS-SJqlS2alDT5avyltV3IxtsElpknGvm6MbZJJ3bhQGOviCTooTBXd6TYeo5e72-fxQzp9vJ-Mb6apYSCbNDN4bpRgBAqjGFVMEupkLvhciCIHKJjMqQDmWE6Z6-hc0RxwxqTIuts4PUbXn7qbNl-7uXV1E0ylN6Fcm_CuvSn170pdLvXCv2mMQSnFe4WLrULwr62LjV6X0bqqMrXzbdQUc8ozQjj8jwIHRRUI0qGXn2j_sBhcsVsJg-490r1HeutRh5__PGMHf5nyPbrvWvk21N1X_9b6APmdmTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050939062</pqid></control><display><type>article</type><title>Molecular Probing of the Microscopic Pressure at Contact Interfaces</title><source>American Chemical Society Journals</source><creator>Hsu, Chao-Chun ; Hsu, Allen Chu-Hsiang ; Lin, Chun-Yen ; Wong, Ken-Tsung ; Bonn, Daniel ; Brouwer, Albert M.</creator><creatorcontrib>Hsu, Chao-Chun ; Hsu, Allen Chu-Hsiang ; Lin, Chun-Yen ; Wong, Ken-Tsung ; Bonn, Daniel ; Brouwer, Albert M.</creatorcontrib><description>Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV–vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c01312</identifier><identifier>PMID: 38696718</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>absorption ; fluorescence ; fluorescence microscopy ; friction ; geophysics ; surface roughness ; transportation ; ultraviolet-visible spectroscopy</subject><ispartof>Journal of the American Chemical Society, 2024-05, Vol.146 (19), p.13258-13265</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a408t-7a1da96420fa94394823e8b65d66fb00f48b3604e4b34e7a1b93b017486731253</cites><orcidid>0000-0002-0406-4445 ; 0000-0002-4482-9983 ; 0000-0001-8925-1997 ; 0000-0002-1680-6186 ; 0000-0002-1731-3869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c01312$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c01312$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38696718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Chao-Chun</creatorcontrib><creatorcontrib>Hsu, Allen Chu-Hsiang</creatorcontrib><creatorcontrib>Lin, Chun-Yen</creatorcontrib><creatorcontrib>Wong, Ken-Tsung</creatorcontrib><creatorcontrib>Bonn, Daniel</creatorcontrib><creatorcontrib>Brouwer, Albert M.</creatorcontrib><title>Molecular Probing of the Microscopic Pressure at Contact Interfaces</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV–vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.</description><subject>absorption</subject><subject>fluorescence</subject><subject>fluorescence microscopy</subject><subject>friction</subject><subject>geophysics</subject><subject>surface roughness</subject><subject>transportation</subject><subject>ultraviolet-visible spectroscopy</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctLw0AQxhdRbH3cPEuOHkydfWb3JFJ8FFr0oOdls920KWm27iaC_70J1qogeBqG-c03jw-hMwwjDARfrYyNI2YBU0z20BBzAinHROyjIQCQNJOCDtBRjKsuZUTiQzSgUiiRYTlE45mvnG0rE5Kn4POyXiS-SJqlS2alDT5avyltV3IxtsElpknGvm6MbZJJ3bhQGOviCTooTBXd6TYeo5e72-fxQzp9vJ-Mb6apYSCbNDN4bpRgBAqjGFVMEupkLvhciCIHKJjMqQDmWE6Z6-hc0RxwxqTIuts4PUbXn7qbNl-7uXV1E0ylN6Fcm_CuvSn170pdLvXCv2mMQSnFe4WLrULwr62LjV6X0bqqMrXzbdQUc8ozQjj8jwIHRRUI0qGXn2j_sBhcsVsJg-490r1HeutRh5__PGMHf5nyPbrvWvk21N1X_9b6APmdmTM</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Hsu, Chao-Chun</creator><creator>Hsu, Allen Chu-Hsiang</creator><creator>Lin, Chun-Yen</creator><creator>Wong, Ken-Tsung</creator><creator>Bonn, Daniel</creator><creator>Brouwer, Albert M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0406-4445</orcidid><orcidid>https://orcid.org/0000-0002-4482-9983</orcidid><orcidid>https://orcid.org/0000-0001-8925-1997</orcidid><orcidid>https://orcid.org/0000-0002-1680-6186</orcidid><orcidid>https://orcid.org/0000-0002-1731-3869</orcidid></search><sort><creationdate>20240515</creationdate><title>Molecular Probing of the Microscopic Pressure at Contact Interfaces</title><author>Hsu, Chao-Chun ; Hsu, Allen Chu-Hsiang ; Lin, Chun-Yen ; Wong, Ken-Tsung ; Bonn, Daniel ; Brouwer, Albert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-7a1da96420fa94394823e8b65d66fb00f48b3604e4b34e7a1b93b017486731253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>fluorescence</topic><topic>fluorescence microscopy</topic><topic>friction</topic><topic>geophysics</topic><topic>surface roughness</topic><topic>transportation</topic><topic>ultraviolet-visible spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chao-Chun</creatorcontrib><creatorcontrib>Hsu, Allen Chu-Hsiang</creatorcontrib><creatorcontrib>Lin, Chun-Yen</creatorcontrib><creatorcontrib>Wong, Ken-Tsung</creatorcontrib><creatorcontrib>Bonn, Daniel</creatorcontrib><creatorcontrib>Brouwer, Albert M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chao-Chun</au><au>Hsu, Allen Chu-Hsiang</au><au>Lin, Chun-Yen</au><au>Wong, Ken-Tsung</au><au>Bonn, Daniel</au><au>Brouwer, Albert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Probing of the Microscopic Pressure at Contact Interfaces</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>146</volume><issue>19</issue><spage>13258</spage><epage>13265</epage><pages>13258-13265</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV–vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38696718</pmid><doi>10.1021/jacs.4c01312</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0406-4445</orcidid><orcidid>https://orcid.org/0000-0002-4482-9983</orcidid><orcidid>https://orcid.org/0000-0001-8925-1997</orcidid><orcidid>https://orcid.org/0000-0002-1680-6186</orcidid><orcidid>https://orcid.org/0000-0002-1731-3869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-05, Vol.146 (19), p.13258-13265
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11099955
source American Chemical Society Journals
subjects absorption
fluorescence
fluorescence microscopy
friction
geophysics
surface roughness
transportation
ultraviolet-visible spectroscopy
title Molecular Probing of the Microscopic Pressure at Contact Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Probing%20of%20the%20Microscopic%20Pressure%20at%20Contact%20Interfaces&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hsu,%20Chao-Chun&rft.date=2024-05-15&rft.volume=146&rft.issue=19&rft.spage=13258&rft.epage=13265&rft.pages=13258-13265&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c01312&rft_dat=%3Cproquest_pubme%3E3050939062%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050939062&rft_id=info:pmid/38696718&rfr_iscdi=true