Molecular Probing of the Microscopic Pressure at Contact Interfaces
Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by th...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-05, Vol.146 (19), p.13258-13265 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13265 |
---|---|
container_issue | 19 |
container_start_page | 13258 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Hsu, Chao-Chun Hsu, Allen Chu-Hsiang Lin, Chun-Yen Wong, Ken-Tsung Bonn, Daniel Brouwer, Albert M. |
description | Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV–vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role. |
doi_str_mv | 10.1021/jacs.4c01312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11099955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050939062</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-7a1da96420fa94394823e8b65d66fb00f48b3604e4b34e7a1b93b017486731253</originalsourceid><addsrcrecordid>eNqFkctLw0AQxhdRbH3cPEuOHkydfWb3JFJ8FFr0oOdls920KWm27iaC_70J1qogeBqG-c03jw-hMwwjDARfrYyNI2YBU0z20BBzAinHROyjIQCQNJOCDtBRjKsuZUTiQzSgUiiRYTlE45mvnG0rE5Kn4POyXiS-SJqlS2alDT5avyltV3IxtsElpknGvm6MbZJJ3bhQGOviCTooTBXd6TYeo5e72-fxQzp9vJ-Mb6apYSCbNDN4bpRgBAqjGFVMEupkLvhciCIHKJjMqQDmWE6Z6-hc0RxwxqTIuts4PUbXn7qbNl-7uXV1E0ylN6Fcm_CuvSn170pdLvXCv2mMQSnFe4WLrULwr62LjV6X0bqqMrXzbdQUc8ozQjj8jwIHRRUI0qGXn2j_sBhcsVsJg-490r1HeutRh5__PGMHf5nyPbrvWvk21N1X_9b6APmdmTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050939062</pqid></control><display><type>article</type><title>Molecular Probing of the Microscopic Pressure at Contact Interfaces</title><source>American Chemical Society Journals</source><creator>Hsu, Chao-Chun ; Hsu, Allen Chu-Hsiang ; Lin, Chun-Yen ; Wong, Ken-Tsung ; Bonn, Daniel ; Brouwer, Albert M.</creator><creatorcontrib>Hsu, Chao-Chun ; Hsu, Allen Chu-Hsiang ; Lin, Chun-Yen ; Wong, Ken-Tsung ; Bonn, Daniel ; Brouwer, Albert M.</creatorcontrib><description>Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV–vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c01312</identifier><identifier>PMID: 38696718</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>absorption ; fluorescence ; fluorescence microscopy ; friction ; geophysics ; surface roughness ; transportation ; ultraviolet-visible spectroscopy</subject><ispartof>Journal of the American Chemical Society, 2024-05, Vol.146 (19), p.13258-13265</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a408t-7a1da96420fa94394823e8b65d66fb00f48b3604e4b34e7a1b93b017486731253</cites><orcidid>0000-0002-0406-4445 ; 0000-0002-4482-9983 ; 0000-0001-8925-1997 ; 0000-0002-1680-6186 ; 0000-0002-1731-3869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c01312$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c01312$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38696718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Chao-Chun</creatorcontrib><creatorcontrib>Hsu, Allen Chu-Hsiang</creatorcontrib><creatorcontrib>Lin, Chun-Yen</creatorcontrib><creatorcontrib>Wong, Ken-Tsung</creatorcontrib><creatorcontrib>Bonn, Daniel</creatorcontrib><creatorcontrib>Brouwer, Albert M.</creatorcontrib><title>Molecular Probing of the Microscopic Pressure at Contact Interfaces</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV–vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.</description><subject>absorption</subject><subject>fluorescence</subject><subject>fluorescence microscopy</subject><subject>friction</subject><subject>geophysics</subject><subject>surface roughness</subject><subject>transportation</subject><subject>ultraviolet-visible spectroscopy</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctLw0AQxhdRbH3cPEuOHkydfWb3JFJ8FFr0oOdls920KWm27iaC_70J1qogeBqG-c03jw-hMwwjDARfrYyNI2YBU0z20BBzAinHROyjIQCQNJOCDtBRjKsuZUTiQzSgUiiRYTlE45mvnG0rE5Kn4POyXiS-SJqlS2alDT5avyltV3IxtsElpknGvm6MbZJJ3bhQGOviCTooTBXd6TYeo5e72-fxQzp9vJ-Mb6apYSCbNDN4bpRgBAqjGFVMEupkLvhciCIHKJjMqQDmWE6Z6-hc0RxwxqTIuts4PUbXn7qbNl-7uXV1E0ylN6Fcm_CuvSn170pdLvXCv2mMQSnFe4WLrULwr62LjV6X0bqqMrXzbdQUc8ozQjj8jwIHRRUI0qGXn2j_sBhcsVsJg-490r1HeutRh5__PGMHf5nyPbrvWvk21N1X_9b6APmdmTM</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Hsu, Chao-Chun</creator><creator>Hsu, Allen Chu-Hsiang</creator><creator>Lin, Chun-Yen</creator><creator>Wong, Ken-Tsung</creator><creator>Bonn, Daniel</creator><creator>Brouwer, Albert M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0406-4445</orcidid><orcidid>https://orcid.org/0000-0002-4482-9983</orcidid><orcidid>https://orcid.org/0000-0001-8925-1997</orcidid><orcidid>https://orcid.org/0000-0002-1680-6186</orcidid><orcidid>https://orcid.org/0000-0002-1731-3869</orcidid></search><sort><creationdate>20240515</creationdate><title>Molecular Probing of the Microscopic Pressure at Contact Interfaces</title><author>Hsu, Chao-Chun ; Hsu, Allen Chu-Hsiang ; Lin, Chun-Yen ; Wong, Ken-Tsung ; Bonn, Daniel ; Brouwer, Albert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-7a1da96420fa94394823e8b65d66fb00f48b3604e4b34e7a1b93b017486731253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>fluorescence</topic><topic>fluorescence microscopy</topic><topic>friction</topic><topic>geophysics</topic><topic>surface roughness</topic><topic>transportation</topic><topic>ultraviolet-visible spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chao-Chun</creatorcontrib><creatorcontrib>Hsu, Allen Chu-Hsiang</creatorcontrib><creatorcontrib>Lin, Chun-Yen</creatorcontrib><creatorcontrib>Wong, Ken-Tsung</creatorcontrib><creatorcontrib>Bonn, Daniel</creatorcontrib><creatorcontrib>Brouwer, Albert M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chao-Chun</au><au>Hsu, Allen Chu-Hsiang</au><au>Lin, Chun-Yen</au><au>Wong, Ken-Tsung</au><au>Bonn, Daniel</au><au>Brouwer, Albert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Probing of the Microscopic Pressure at Contact Interfaces</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>146</volume><issue>19</issue><spage>13258</spage><epage>13265</epage><pages>13258-13265</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Obtaining insights into friction at the nanoscopic level and being able to translate these into macroscopic friction behavior in real-world systems is of paramount importance in many contexts, ranging from transportation to high-precision technology and seismology. Since friction is controlled by the local pressure at the contact it is important to be able to detect both the real contact area and the nanoscopic local pressure distribution simultaneously. In this paper, we present a method that uses planarizable molecular probes in combination with fluorescence microscopy to achieve this goal. These probes, inherently twisted in their ground states, undergo planarization under the influence of pressure, leading to bathochromic and hyperchromic shifts of their UV–vis absorption band. This allows us to map the local pressure in mechanical contact from fluorescence by exciting the emission in the long-wavelength region of the absorption band. We demonstrate a linear relationship between fluorescence intensity and (simulated) pressure at the submicron scale. This relationship enables us to experimentally depict the pressure distribution in multiasperity contacts. The method presented here offers a new way of bridging friction studies of the nanoscale model systems and practical situations for which surface roughness plays a crucial role.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38696718</pmid><doi>10.1021/jacs.4c01312</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0406-4445</orcidid><orcidid>https://orcid.org/0000-0002-4482-9983</orcidid><orcidid>https://orcid.org/0000-0001-8925-1997</orcidid><orcidid>https://orcid.org/0000-0002-1680-6186</orcidid><orcidid>https://orcid.org/0000-0002-1731-3869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-05, Vol.146 (19), p.13258-13265 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11099955 |
source | American Chemical Society Journals |
subjects | absorption fluorescence fluorescence microscopy friction geophysics surface roughness transportation ultraviolet-visible spectroscopy |
title | Molecular Probing of the Microscopic Pressure at Contact Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Probing%20of%20the%20Microscopic%20Pressure%20at%20Contact%20Interfaces&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hsu,%20Chao-Chun&rft.date=2024-05-15&rft.volume=146&rft.issue=19&rft.spage=13258&rft.epage=13265&rft.pages=13258-13265&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c01312&rft_dat=%3Cproquest_pubme%3E3050939062%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050939062&rft_id=info:pmid/38696718&rfr_iscdi=true |