Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients
Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death...
Gespeichert in:
Veröffentlicht in: | Clinical and experimental immunology 2024-05, Vol.216 (3), p.293-306 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 3 |
container_start_page | 293 |
container_title | Clinical and experimental immunology |
container_volume | 216 |
creator | Burton, Ross J Raffray, Loïc Moet, Linda M Cuff, Simone M White, Daniel A Baker, Sarah E Moser, Bernhard O'Donnell, Valerie B Ghazal, Peter Morgan, Matt P Artemiou, Andreas Eberl, Matthias |
description | Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters. |
doi_str_mv | 10.1093/cei/uxae019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11097916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2934272834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ddadfc417c0eaeaabc3bb4ad03d689e37ec04c07541854994a92b0beb72d21893</originalsourceid><addsrcrecordid>eNpVkUuLFDEUhYMoTju6ci9ZClJOXvXISqTxBQNuxnW4SW5PR6qTMkk1-kP8v6addhhXIfd8OSfcQ8hLzt5ypuWVw3C1_gRkXD8iGy6HvhNC6cdkwxjTneZMXZBnpXxv12EYxFNyISclWd-LDfm9TfGIsYYUYaYQPV2jezi66RzOM81YlhQLFtrUmoNdK9KaaN0jXTL64E48TTvq5hCDay_TWl064F9TB2uBGo5ILbiKOTR9gbpPtxhpiLTgUkI5jUJLLs_Jkx3MBV-cz0vy7eOHm-3n7vrrpy_b99edk4rVznvwO6f46BgCAlgnrVXgmfTDpFGO6JhybOwVn3qltQItLLNoR-EFn7S8JO_ufJfVHtC7lp1hNksOB8i_TIJg_ldi2JvbdDS8bX7UfGgOr88OOf1YsVRzCOW0MYiY1mKElkqMYpKqoW_uUJdTKRl39zmcmVOTpjVpzk02-tXDr92z_6qTfwAc3aFb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934272834</pqid></control><display><type>article</type><title>Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Burton, Ross J ; Raffray, Loïc ; Moet, Linda M ; Cuff, Simone M ; White, Daniel A ; Baker, Sarah E ; Moser, Bernhard ; O'Donnell, Valerie B ; Ghazal, Peter ; Morgan, Matt P ; Artemiou, Andreas ; Eberl, Matthias</creator><creatorcontrib>Burton, Ross J ; Raffray, Loïc ; Moet, Linda M ; Cuff, Simone M ; White, Daniel A ; Baker, Sarah E ; Moser, Bernhard ; O'Donnell, Valerie B ; Ghazal, Peter ; Morgan, Matt P ; Artemiou, Andreas ; Eberl, Matthias</creatorcontrib><description>Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.</description><identifier>ISSN: 0009-9104</identifier><identifier>EISSN: 1365-2249</identifier><identifier>DOI: 10.1093/cei/uxae019</identifier><identifier>PMID: 38430552</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aged ; Biomarkers - blood ; CD4-Positive T-Lymphocytes - immunology ; Female ; Gram-Negative Bacterial Infections - immunology ; Humans ; Immunity, Cellular ; Infection/Infectious Disease ; Interleukin-2 Receptor alpha Subunit - blood ; Interleukin-2 Receptor alpha Subunit - immunology ; Machine Learning ; Male ; Middle Aged ; Prognosis ; Receptors, CXCR3 - metabolism ; Sepsis - immunology ; Sepsis - microbiology ; T-Lymphocytes - immunology</subject><ispartof>Clinical and experimental immunology, 2024-05, Vol.216 (3), p.293-306</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Immunology.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Immunology. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-ddadfc417c0eaeaabc3bb4ad03d689e37ec04c07541854994a92b0beb72d21893</cites><orcidid>0000-0002-2357-7190 ; 0000-0002-4354-4572 ; 0000-0003-0035-2228 ; 0000-0002-7501-4090 ; 0000-0003-4089-8460 ; 0000-0002-9390-5348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38430552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burton, Ross J</creatorcontrib><creatorcontrib>Raffray, Loïc</creatorcontrib><creatorcontrib>Moet, Linda M</creatorcontrib><creatorcontrib>Cuff, Simone M</creatorcontrib><creatorcontrib>White, Daniel A</creatorcontrib><creatorcontrib>Baker, Sarah E</creatorcontrib><creatorcontrib>Moser, Bernhard</creatorcontrib><creatorcontrib>O'Donnell, Valerie B</creatorcontrib><creatorcontrib>Ghazal, Peter</creatorcontrib><creatorcontrib>Morgan, Matt P</creatorcontrib><creatorcontrib>Artemiou, Andreas</creatorcontrib><creatorcontrib>Eberl, Matthias</creatorcontrib><title>Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients</title><title>Clinical and experimental immunology</title><addtitle>Clin Exp Immunol</addtitle><description>Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.</description><subject>Aged</subject><subject>Biomarkers - blood</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>Female</subject><subject>Gram-Negative Bacterial Infections - immunology</subject><subject>Humans</subject><subject>Immunity, Cellular</subject><subject>Infection/Infectious Disease</subject><subject>Interleukin-2 Receptor alpha Subunit - blood</subject><subject>Interleukin-2 Receptor alpha Subunit - immunology</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prognosis</subject><subject>Receptors, CXCR3 - metabolism</subject><subject>Sepsis - immunology</subject><subject>Sepsis - microbiology</subject><subject>T-Lymphocytes - immunology</subject><issn>0009-9104</issn><issn>1365-2249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUuLFDEUhYMoTju6ci9ZClJOXvXISqTxBQNuxnW4SW5PR6qTMkk1-kP8v6addhhXIfd8OSfcQ8hLzt5ypuWVw3C1_gRkXD8iGy6HvhNC6cdkwxjTneZMXZBnpXxv12EYxFNyISclWd-LDfm9TfGIsYYUYaYQPV2jezi66RzOM81YlhQLFtrUmoNdK9KaaN0jXTL64E48TTvq5hCDay_TWl064F9TB2uBGo5ILbiKOTR9gbpPtxhpiLTgUkI5jUJLLs_Jkx3MBV-cz0vy7eOHm-3n7vrrpy_b99edk4rVznvwO6f46BgCAlgnrVXgmfTDpFGO6JhybOwVn3qltQItLLNoR-EFn7S8JO_ufJfVHtC7lp1hNksOB8i_TIJg_ldi2JvbdDS8bX7UfGgOr88OOf1YsVRzCOW0MYiY1mKElkqMYpKqoW_uUJdTKRl39zmcmVOTpjVpzk02-tXDr92z_6qTfwAc3aFb</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Burton, Ross J</creator><creator>Raffray, Loïc</creator><creator>Moet, Linda M</creator><creator>Cuff, Simone M</creator><creator>White, Daniel A</creator><creator>Baker, Sarah E</creator><creator>Moser, Bernhard</creator><creator>O'Donnell, Valerie B</creator><creator>Ghazal, Peter</creator><creator>Morgan, Matt P</creator><creator>Artemiou, Andreas</creator><creator>Eberl, Matthias</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2357-7190</orcidid><orcidid>https://orcid.org/0000-0002-4354-4572</orcidid><orcidid>https://orcid.org/0000-0003-0035-2228</orcidid><orcidid>https://orcid.org/0000-0002-7501-4090</orcidid><orcidid>https://orcid.org/0000-0003-4089-8460</orcidid><orcidid>https://orcid.org/0000-0002-9390-5348</orcidid></search><sort><creationdate>20240516</creationdate><title>Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients</title><author>Burton, Ross J ; Raffray, Loïc ; Moet, Linda M ; Cuff, Simone M ; White, Daniel A ; Baker, Sarah E ; Moser, Bernhard ; O'Donnell, Valerie B ; Ghazal, Peter ; Morgan, Matt P ; Artemiou, Andreas ; Eberl, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ddadfc417c0eaeaabc3bb4ad03d689e37ec04c07541854994a92b0beb72d21893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Biomarkers - blood</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>Female</topic><topic>Gram-Negative Bacterial Infections - immunology</topic><topic>Humans</topic><topic>Immunity, Cellular</topic><topic>Infection/Infectious Disease</topic><topic>Interleukin-2 Receptor alpha Subunit - blood</topic><topic>Interleukin-2 Receptor alpha Subunit - immunology</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prognosis</topic><topic>Receptors, CXCR3 - metabolism</topic><topic>Sepsis - immunology</topic><topic>Sepsis - microbiology</topic><topic>T-Lymphocytes - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burton, Ross J</creatorcontrib><creatorcontrib>Raffray, Loïc</creatorcontrib><creatorcontrib>Moet, Linda M</creatorcontrib><creatorcontrib>Cuff, Simone M</creatorcontrib><creatorcontrib>White, Daniel A</creatorcontrib><creatorcontrib>Baker, Sarah E</creatorcontrib><creatorcontrib>Moser, Bernhard</creatorcontrib><creatorcontrib>O'Donnell, Valerie B</creatorcontrib><creatorcontrib>Ghazal, Peter</creatorcontrib><creatorcontrib>Morgan, Matt P</creatorcontrib><creatorcontrib>Artemiou, Andreas</creatorcontrib><creatorcontrib>Eberl, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and experimental immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burton, Ross J</au><au>Raffray, Loïc</au><au>Moet, Linda M</au><au>Cuff, Simone M</au><au>White, Daniel A</au><au>Baker, Sarah E</au><au>Moser, Bernhard</au><au>O'Donnell, Valerie B</au><au>Ghazal, Peter</au><au>Morgan, Matt P</au><au>Artemiou, Andreas</au><au>Eberl, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients</atitle><jtitle>Clinical and experimental immunology</jtitle><addtitle>Clin Exp Immunol</addtitle><date>2024-05-16</date><risdate>2024</risdate><volume>216</volume><issue>3</issue><spage>293</spage><epage>306</epage><pages>293-306</pages><issn>0009-9104</issn><eissn>1365-2249</eissn><abstract>Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38430552</pmid><doi>10.1093/cei/uxae019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2357-7190</orcidid><orcidid>https://orcid.org/0000-0002-4354-4572</orcidid><orcidid>https://orcid.org/0000-0003-0035-2228</orcidid><orcidid>https://orcid.org/0000-0002-7501-4090</orcidid><orcidid>https://orcid.org/0000-0003-4089-8460</orcidid><orcidid>https://orcid.org/0000-0002-9390-5348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9104 |
ispartof | Clinical and experimental immunology, 2024-05, Vol.216 (3), p.293-306 |
issn | 0009-9104 1365-2249 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11097916 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Aged Biomarkers - blood CD4-Positive T-Lymphocytes - immunology Female Gram-Negative Bacterial Infections - immunology Humans Immunity, Cellular Infection/Infectious Disease Interleukin-2 Receptor alpha Subunit - blood Interleukin-2 Receptor alpha Subunit - immunology Machine Learning Male Middle Aged Prognosis Receptors, CXCR3 - metabolism Sepsis - immunology Sepsis - microbiology T-Lymphocytes - immunology |
title | Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conventional%20and%20unconventional%20T-cell%20responses%20contribute%20to%20the%20prediction%20of%20clinical%20outcome%20and%20causative%20bacterial%20pathogen%20in%20sepsis%20patients&rft.jtitle=Clinical%20and%20experimental%20immunology&rft.au=Burton,%20Ross%20J&rft.date=2024-05-16&rft.volume=216&rft.issue=3&rft.spage=293&rft.epage=306&rft.pages=293-306&rft.issn=0009-9104&rft.eissn=1365-2249&rft_id=info:doi/10.1093/cei/uxae019&rft_dat=%3Cproquest_pubme%3E2934272834%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2934272834&rft_id=info:pmid/38430552&rfr_iscdi=true |