Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig

•Anisotropic mechanical properties in the brain are investigated by MR elastography.•Longitudinal changes in brain properties are assessed during brain development.•Multi-excitation wave fields and fiber directions from DTI enable anisotropic MRE. The relationship between brain development and mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2023-08, Vol.277, p.120234-120234, Article 120234
Hauptverfasser: Wang, Shuaihu, Guertler, Charlotte A., Okamoto, Ruth J., Johnson, Curtis L., McGarry, Matthew D.J., Bayly, Philip V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120234
container_issue
container_start_page 120234
container_title NeuroImage (Orlando, Fla.)
container_volume 277
creator Wang, Shuaihu
Guertler, Charlotte A.
Okamoto, Ruth J.
Johnson, Curtis L.
McGarry, Matthew D.J.
Bayly, Philip V.
description •Anisotropic mechanical properties in the brain are investigated by MR elastography.•Longitudinal changes in brain properties are assessed during brain development.•Multi-excitation wave fields and fiber directions from DTI enable anisotropic MRE. The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.
doi_str_mv 10.1016/j.neuroimage.2023.120234
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11081136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811923003853</els_id><sourcerecordid>2839737835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-9e561176b85144e3d665a2bceaf42deafe74afa5b1ee452792f49878857a1e193</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCIlsJfQJa4cMnijzi2TwiqllZqhYTgxMFynMmuV4kd7GSl_fc42lI-Lhw8Hstv3sy8hxCmZEMJbd7tNwGWFP1ot7BhhPENXWP9BJ1TokWlhWRP11zwSlGqz9CLnPeEEE1r9RydcckbzYQ4R9_vwe1s8M4OOM--7wPkjG3oyvE5zilORzyCzUuCDrdHfP_lCndL8mGL22R9wB0cYIjTCGHG5TnvAI8--MlvX6JnvR0yvHq4L9C366uvlzfV3edPt5cf7ioniJorDaKhVDatErSugXdNIyxrHdi-Zl2JIGvbW9FSgFowqVlfayWVEtJSoJpfoPcn3mlpR-hcmSTZwUyp6JOOJlpv_v4Jfme28WAoJUUd3hSGtw8MKf5YIM9m9NnBMNgAccmGKU4ayRqyNnvzD3QflxTKfitKSy4VFwWlTiiXYs4J-sdpKDGrhWZvfltoVvPMycJS-vrPbR4Lf3lWAB9PACiaHjwkk52H4KDzCdxsuuj_3-Un4_-zcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839737835</pqid></control><display><type>article</type><title>Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Wang, Shuaihu ; Guertler, Charlotte A. ; Okamoto, Ruth J. ; Johnson, Curtis L. ; McGarry, Matthew D.J. ; Bayly, Philip V.</creator><creatorcontrib>Wang, Shuaihu ; Guertler, Charlotte A. ; Okamoto, Ruth J. ; Johnson, Curtis L. ; McGarry, Matthew D.J. ; Bayly, Philip V.</creatorcontrib><description>•Anisotropic mechanical properties in the brain are investigated by MR elastography.•Longitudinal changes in brain properties are assessed during brain development.•Multi-excitation wave fields and fiber directions from DTI enable anisotropic MRE. The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2023.120234</identifier><identifier>PMID: 37369255</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Anisotropy ; Brain ; Brain - diagnostic imaging ; Brain development ; Brain mapping ; Child development ; Cognition &amp; reasoning ; Diffusion Tensor Imaging ; Elasticity Imaging Techniques - methods ; Estimates ; Female ; Jaw ; Longitudinal studies ; Magnetic resonance elastography ; Magnetic resonance imaging ; Mechanical properties ; Motion detection ; Neuroimaging ; Stiffness ; Substantia alba ; Substantia grisea ; Swine ; Swine, Miniature ; Viscoelasticity</subject><ispartof>NeuroImage (Orlando, Fla.), 2023-08, Vol.277, p.120234-120234, Article 120234</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2023. The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-9e561176b85144e3d665a2bceaf42deafe74afa5b1ee452792f49878857a1e193</citedby><cites>FETCH-LOGICAL-c508t-9e561176b85144e3d665a2bceaf42deafe74afa5b1ee452792f49878857a1e193</cites><orcidid>0000-0003-4303-0704 ; 0000-0002-3085-3878 ; 0000-0001-6993-3501 ; 0000-0002-7760-131X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811923003853$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37369255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shuaihu</creatorcontrib><creatorcontrib>Guertler, Charlotte A.</creatorcontrib><creatorcontrib>Okamoto, Ruth J.</creatorcontrib><creatorcontrib>Johnson, Curtis L.</creatorcontrib><creatorcontrib>McGarry, Matthew D.J.</creatorcontrib><creatorcontrib>Bayly, Philip V.</creatorcontrib><title>Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>•Anisotropic mechanical properties in the brain are investigated by MR elastography.•Longitudinal changes in brain properties are assessed during brain development.•Multi-excitation wave fields and fiber directions from DTI enable anisotropic MRE. The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain development</subject><subject>Brain mapping</subject><subject>Child development</subject><subject>Cognition &amp; reasoning</subject><subject>Diffusion Tensor Imaging</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Estimates</subject><subject>Female</subject><subject>Jaw</subject><subject>Longitudinal studies</subject><subject>Magnetic resonance elastography</subject><subject>Magnetic resonance imaging</subject><subject>Mechanical properties</subject><subject>Motion detection</subject><subject>Neuroimaging</subject><subject>Stiffness</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><subject>Swine</subject><subject>Swine, Miniature</subject><subject>Viscoelasticity</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFUU1v1DAQtRCIlsJfQJa4cMnijzi2TwiqllZqhYTgxMFynMmuV4kd7GSl_fc42lI-Lhw8Hstv3sy8hxCmZEMJbd7tNwGWFP1ot7BhhPENXWP9BJ1TokWlhWRP11zwSlGqz9CLnPeEEE1r9RydcckbzYQ4R9_vwe1s8M4OOM--7wPkjG3oyvE5zilORzyCzUuCDrdHfP_lCndL8mGL22R9wB0cYIjTCGHG5TnvAI8--MlvX6JnvR0yvHq4L9C366uvlzfV3edPt5cf7ioniJorDaKhVDatErSugXdNIyxrHdi-Zl2JIGvbW9FSgFowqVlfayWVEtJSoJpfoPcn3mlpR-hcmSTZwUyp6JOOJlpv_v4Jfme28WAoJUUd3hSGtw8MKf5YIM9m9NnBMNgAccmGKU4ayRqyNnvzD3QflxTKfitKSy4VFwWlTiiXYs4J-sdpKDGrhWZvfltoVvPMycJS-vrPbR4Lf3lWAB9PACiaHjwkk52H4KDzCdxsuuj_3-Un4_-zcQ</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Wang, Shuaihu</creator><creator>Guertler, Charlotte A.</creator><creator>Okamoto, Ruth J.</creator><creator>Johnson, Curtis L.</creator><creator>McGarry, Matthew D.J.</creator><creator>Bayly, Philip V.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4303-0704</orcidid><orcidid>https://orcid.org/0000-0002-3085-3878</orcidid><orcidid>https://orcid.org/0000-0001-6993-3501</orcidid><orcidid>https://orcid.org/0000-0002-7760-131X</orcidid></search><sort><creationdate>20230815</creationdate><title>Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig</title><author>Wang, Shuaihu ; Guertler, Charlotte A. ; Okamoto, Ruth J. ; Johnson, Curtis L. ; McGarry, Matthew D.J. ; Bayly, Philip V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-9e561176b85144e3d665a2bceaf42deafe74afa5b1ee452792f49878857a1e193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain development</topic><topic>Brain mapping</topic><topic>Child development</topic><topic>Cognition &amp; reasoning</topic><topic>Diffusion Tensor Imaging</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Estimates</topic><topic>Female</topic><topic>Jaw</topic><topic>Longitudinal studies</topic><topic>Magnetic resonance elastography</topic><topic>Magnetic resonance imaging</topic><topic>Mechanical properties</topic><topic>Motion detection</topic><topic>Neuroimaging</topic><topic>Stiffness</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><topic>Swine</topic><topic>Swine, Miniature</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuaihu</creatorcontrib><creatorcontrib>Guertler, Charlotte A.</creatorcontrib><creatorcontrib>Okamoto, Ruth J.</creatorcontrib><creatorcontrib>Johnson, Curtis L.</creatorcontrib><creatorcontrib>McGarry, Matthew D.J.</creatorcontrib><creatorcontrib>Bayly, Philip V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuaihu</au><au>Guertler, Charlotte A.</au><au>Okamoto, Ruth J.</au><au>Johnson, Curtis L.</au><au>McGarry, Matthew D.J.</au><au>Bayly, Philip V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2023-08-15</date><risdate>2023</risdate><volume>277</volume><spage>120234</spage><epage>120234</epage><pages>120234-120234</pages><artnum>120234</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>•Anisotropic mechanical properties in the brain are investigated by MR elastography.•Longitudinal changes in brain properties are assessed during brain development.•Multi-excitation wave fields and fiber directions from DTI enable anisotropic MRE. The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37369255</pmid><doi>10.1016/j.neuroimage.2023.120234</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4303-0704</orcidid><orcidid>https://orcid.org/0000-0002-3085-3878</orcidid><orcidid>https://orcid.org/0000-0001-6993-3501</orcidid><orcidid>https://orcid.org/0000-0002-7760-131X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2023-08, Vol.277, p.120234-120234, Article 120234
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11081136
source MEDLINE; Elsevier ScienceDirect Journals Complete; DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ)
subjects Animals
Anisotropy
Brain
Brain - diagnostic imaging
Brain development
Brain mapping
Child development
Cognition & reasoning
Diffusion Tensor Imaging
Elasticity Imaging Techniques - methods
Estimates
Female
Jaw
Longitudinal studies
Magnetic resonance elastography
Magnetic resonance imaging
Mechanical properties
Motion detection
Neuroimaging
Stiffness
Substantia alba
Substantia grisea
Swine
Swine, Miniature
Viscoelasticity
title Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20stiffness%20and%20anisotropy%20measured%20by%20MRE%20during%20brain%20development%20in%20the%20minipig&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Wang,%20Shuaihu&rft.date=2023-08-15&rft.volume=277&rft.spage=120234&rft.epage=120234&rft.pages=120234-120234&rft.artnum=120234&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2023.120234&rft_dat=%3Cproquest_pubme%3E2839737835%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839737835&rft_id=info:pmid/37369255&rft_els_id=S1053811923003853&rfr_iscdi=true