The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2024-05, Vol.38 (5), p.951-962
Hauptverfasser: O’Connor, Kevin W., Kishimoto, Kensei, Kuzma, Irena O., Wagner, Kelsey P., Selway, Jonathan S., Roderick, Justine E., Karna, Keshab K., Gallagher, Kayleigh M., Hu, Kai, Liu, Haibo, Li, Rui, Brehm, Michael A., Zhu, Lihua Julie, Curtis, David J., Tremblay, Cedric S., Kelliher, Michelle A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 962
container_issue 5
container_start_page 951
container_title Leukemia
container_volume 38
creator O’Connor, Kevin W.
Kishimoto, Kensei
Kuzma, Irena O.
Wagner, Kelsey P.
Selway, Jonathan S.
Roderick, Justine E.
Karna, Keshab K.
Gallagher, Kayleigh M.
Hu, Kai
Liu, Haibo
Li, Rui
Brehm, Michael A.
Zhu, Lihua Julie
Curtis, David J.
Tremblay, Cedric S.
Kelliher, Michelle A.
description Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1 / LMO mouse models, double negative-3 (DN3; CD4 − CD8 − CD25 + CD44 − ) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle–restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL / LMO patient samples revealed a similar pattern in CD7 + CD1a − thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO -induced T-ALL and its clinical implications in therapy failure.
doi_str_mv 10.1038/s41375-024-02232-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11073972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051201801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b2d53b5209dea8cef1e0f23aea683d7861d652dc8d613cf60a82d3d6c64b84e53</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS0EomnhBVggS2zYmPpn7HFWKKqgIA2qKoW15dh3ElczdmrPIPXtcUhboIsuLC_Od4_v8UHoHaOfGBX6vDRMtJJQ3tTDBSf6BVqwplVESsleogXVuiVqyZsTdFrKDaUHUb1GJ0JLKWTLFuh6vQOc0wA49fh2DlAcxAlPu7sxOLzPaQsxTCkXHCJer7rz7scVJyH62YHHa7LqOux2MKapemQbHbxBr3o7FHh7f5-hn1-_rC--ke7q8vvFqiOu4WoiG-6l2EhOlx6sdtAzoD0XFqzSwrdaMa8k9057xYTrFbWae-GVU81GNyDFGfp89N3PmxH8Ye1sB7PPYbT5ziQbzP9KDDuzTb8MY7QVy5ZXh4_3DjndzlAmM4YafxhshDQXI-qvyraRTFT0wxP0Js051nyVkoxTpimrFD9SLqdSMvSP2zBqDpWZY2WmVmb-VGZ0HXr_b47HkYeOKiCOQKlS3EL--_Yztr8BTAGhTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051201801</pqid></control><display><type>article</type><title>The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance</title><source>SpringerLink Journals</source><creator>O’Connor, Kevin W. ; Kishimoto, Kensei ; Kuzma, Irena O. ; Wagner, Kelsey P. ; Selway, Jonathan S. ; Roderick, Justine E. ; Karna, Keshab K. ; Gallagher, Kayleigh M. ; Hu, Kai ; Liu, Haibo ; Li, Rui ; Brehm, Michael A. ; Zhu, Lihua Julie ; Curtis, David J. ; Tremblay, Cedric S. ; Kelliher, Michelle A.</creator><creatorcontrib>O’Connor, Kevin W. ; Kishimoto, Kensei ; Kuzma, Irena O. ; Wagner, Kelsey P. ; Selway, Jonathan S. ; Roderick, Justine E. ; Karna, Keshab K. ; Gallagher, Kayleigh M. ; Hu, Kai ; Liu, Haibo ; Li, Rui ; Brehm, Michael A. ; Zhu, Lihua Julie ; Curtis, David J. ; Tremblay, Cedric S. ; Kelliher, Michelle A.</creatorcontrib><description>Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1 / LMO mouse models, double negative-3 (DN3; CD4 − CD8 − CD25 + CD44 − ) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle–restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL / LMO patient samples revealed a similar pattern in CD7 + CD1a − thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO -induced T-ALL and its clinical implications in therapy failure.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/s41375-024-02232-8</identifier><identifier>PMID: 38553571</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 38/91 ; 45 ; 631/67/1059/99 ; 631/67/1990/283/2125 ; 631/67/395 ; 631/67/70 ; 631/67/71 ; 64 ; 64/60 ; Acute lymphoblastic leukemia ; Animal models ; Cancer Research ; CD25 antigen ; CD4 antigen ; CD44 antigen ; CD7 antigen ; CD8 antigen ; Cell culture ; Cell cycle ; Critical Care Medicine ; Gene sequencing ; Genes ; Genetic transformation ; Hematology ; Heterogeneity ; In vivo methods and tests ; Intensive ; Internal Medicine ; Leukemia ; Leukemogenesis ; Lymphocytes T ; Medicine ; Medicine &amp; Public Health ; Minimal residual disease ; Oncology ; Thymus</subject><ispartof>Leukemia, 2024-05, Vol.38 (5), p.951-962</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-b2d53b5209dea8cef1e0f23aea683d7861d652dc8d613cf60a82d3d6c64b84e53</cites><orcidid>0000-0001-9211-3659 ; 0000-0002-0745-1969 ; 0000-0002-6555-2581 ; 0000-0003-2396-776X ; 0000-0001-9497-0996 ; 0000-0001-5121-623X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41375-024-02232-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41375-024-02232-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38553571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Connor, Kevin W.</creatorcontrib><creatorcontrib>Kishimoto, Kensei</creatorcontrib><creatorcontrib>Kuzma, Irena O.</creatorcontrib><creatorcontrib>Wagner, Kelsey P.</creatorcontrib><creatorcontrib>Selway, Jonathan S.</creatorcontrib><creatorcontrib>Roderick, Justine E.</creatorcontrib><creatorcontrib>Karna, Keshab K.</creatorcontrib><creatorcontrib>Gallagher, Kayleigh M.</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Liu, Haibo</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Brehm, Michael A.</creatorcontrib><creatorcontrib>Zhu, Lihua Julie</creatorcontrib><creatorcontrib>Curtis, David J.</creatorcontrib><creatorcontrib>Tremblay, Cedric S.</creatorcontrib><creatorcontrib>Kelliher, Michelle A.</creatorcontrib><title>The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1 / LMO mouse models, double negative-3 (DN3; CD4 − CD8 − CD25 + CD44 − ) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle–restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL / LMO patient samples revealed a similar pattern in CD7 + CD1a − thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO -induced T-ALL and its clinical implications in therapy failure.</description><subject>38/39</subject><subject>38/91</subject><subject>45</subject><subject>631/67/1059/99</subject><subject>631/67/1990/283/2125</subject><subject>631/67/395</subject><subject>631/67/70</subject><subject>631/67/71</subject><subject>64</subject><subject>64/60</subject><subject>Acute lymphoblastic leukemia</subject><subject>Animal models</subject><subject>Cancer Research</subject><subject>CD25 antigen</subject><subject>CD4 antigen</subject><subject>CD44 antigen</subject><subject>CD7 antigen</subject><subject>CD8 antigen</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Critical Care Medicine</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic transformation</subject><subject>Hematology</subject><subject>Heterogeneity</subject><subject>In vivo methods and tests</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemogenesis</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Minimal residual disease</subject><subject>Oncology</subject><subject>Thymus</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1uEzEUhS0EomnhBVggS2zYmPpn7HFWKKqgIA2qKoW15dh3ElczdmrPIPXtcUhboIsuLC_Od4_v8UHoHaOfGBX6vDRMtJJQ3tTDBSf6BVqwplVESsleogXVuiVqyZsTdFrKDaUHUb1GJ0JLKWTLFuh6vQOc0wA49fh2DlAcxAlPu7sxOLzPaQsxTCkXHCJer7rz7scVJyH62YHHa7LqOux2MKapemQbHbxBr3o7FHh7f5-hn1-_rC--ke7q8vvFqiOu4WoiG-6l2EhOlx6sdtAzoD0XFqzSwrdaMa8k9057xYTrFbWae-GVU81GNyDFGfp89N3PmxH8Ye1sB7PPYbT5ziQbzP9KDDuzTb8MY7QVy5ZXh4_3DjndzlAmM4YafxhshDQXI-qvyraRTFT0wxP0Js051nyVkoxTpimrFD9SLqdSMvSP2zBqDpWZY2WmVmb-VGZ0HXr_b47HkYeOKiCOQKlS3EL--_Yztr8BTAGhTw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>O’Connor, Kevin W.</creator><creator>Kishimoto, Kensei</creator><creator>Kuzma, Irena O.</creator><creator>Wagner, Kelsey P.</creator><creator>Selway, Jonathan S.</creator><creator>Roderick, Justine E.</creator><creator>Karna, Keshab K.</creator><creator>Gallagher, Kayleigh M.</creator><creator>Hu, Kai</creator><creator>Liu, Haibo</creator><creator>Li, Rui</creator><creator>Brehm, Michael A.</creator><creator>Zhu, Lihua Julie</creator><creator>Curtis, David J.</creator><creator>Tremblay, Cedric S.</creator><creator>Kelliher, Michelle A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9211-3659</orcidid><orcidid>https://orcid.org/0000-0002-0745-1969</orcidid><orcidid>https://orcid.org/0000-0002-6555-2581</orcidid><orcidid>https://orcid.org/0000-0003-2396-776X</orcidid><orcidid>https://orcid.org/0000-0001-9497-0996</orcidid><orcidid>https://orcid.org/0000-0001-5121-623X</orcidid></search><sort><creationdate>20240501</creationdate><title>The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance</title><author>O’Connor, Kevin W. ; Kishimoto, Kensei ; Kuzma, Irena O. ; Wagner, Kelsey P. ; Selway, Jonathan S. ; Roderick, Justine E. ; Karna, Keshab K. ; Gallagher, Kayleigh M. ; Hu, Kai ; Liu, Haibo ; Li, Rui ; Brehm, Michael A. ; Zhu, Lihua Julie ; Curtis, David J. ; Tremblay, Cedric S. ; Kelliher, Michelle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b2d53b5209dea8cef1e0f23aea683d7861d652dc8d613cf60a82d3d6c64b84e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>38/91</topic><topic>45</topic><topic>631/67/1059/99</topic><topic>631/67/1990/283/2125</topic><topic>631/67/395</topic><topic>631/67/70</topic><topic>631/67/71</topic><topic>64</topic><topic>64/60</topic><topic>Acute lymphoblastic leukemia</topic><topic>Animal models</topic><topic>Cancer Research</topic><topic>CD25 antigen</topic><topic>CD4 antigen</topic><topic>CD44 antigen</topic><topic>CD7 antigen</topic><topic>CD8 antigen</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Critical Care Medicine</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic transformation</topic><topic>Hematology</topic><topic>Heterogeneity</topic><topic>In vivo methods and tests</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemogenesis</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Minimal residual disease</topic><topic>Oncology</topic><topic>Thymus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Connor, Kevin W.</creatorcontrib><creatorcontrib>Kishimoto, Kensei</creatorcontrib><creatorcontrib>Kuzma, Irena O.</creatorcontrib><creatorcontrib>Wagner, Kelsey P.</creatorcontrib><creatorcontrib>Selway, Jonathan S.</creatorcontrib><creatorcontrib>Roderick, Justine E.</creatorcontrib><creatorcontrib>Karna, Keshab K.</creatorcontrib><creatorcontrib>Gallagher, Kayleigh M.</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Liu, Haibo</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Brehm, Michael A.</creatorcontrib><creatorcontrib>Zhu, Lihua Julie</creatorcontrib><creatorcontrib>Curtis, David J.</creatorcontrib><creatorcontrib>Tremblay, Cedric S.</creatorcontrib><creatorcontrib>Kelliher, Michelle A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Connor, Kevin W.</au><au>Kishimoto, Kensei</au><au>Kuzma, Irena O.</au><au>Wagner, Kelsey P.</au><au>Selway, Jonathan S.</au><au>Roderick, Justine E.</au><au>Karna, Keshab K.</au><au>Gallagher, Kayleigh M.</au><au>Hu, Kai</au><au>Liu, Haibo</au><au>Li, Rui</au><au>Brehm, Michael A.</au><au>Zhu, Lihua Julie</au><au>Curtis, David J.</au><au>Tremblay, Cedric S.</au><au>Kelliher, Michelle A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>38</volume><issue>5</issue><spage>951</spage><epage>962</epage><pages>951-962</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1 / LMO mouse models, double negative-3 (DN3; CD4 − CD8 − CD25 + CD44 − ) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle–restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL / LMO patient samples revealed a similar pattern in CD7 + CD1a − thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO -induced T-ALL and its clinical implications in therapy failure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38553571</pmid><doi>10.1038/s41375-024-02232-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9211-3659</orcidid><orcidid>https://orcid.org/0000-0002-0745-1969</orcidid><orcidid>https://orcid.org/0000-0002-6555-2581</orcidid><orcidid>https://orcid.org/0000-0003-2396-776X</orcidid><orcidid>https://orcid.org/0000-0001-9497-0996</orcidid><orcidid>https://orcid.org/0000-0001-5121-623X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2024-05, Vol.38 (5), p.951-962
issn 0887-6924
1476-5551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11073972
source SpringerLink Journals
subjects 38/39
38/91
45
631/67/1059/99
631/67/1990/283/2125
631/67/395
631/67/70
631/67/71
64
64/60
Acute lymphoblastic leukemia
Animal models
Cancer Research
CD25 antigen
CD4 antigen
CD44 antigen
CD7 antigen
CD8 antigen
Cell culture
Cell cycle
Critical Care Medicine
Gene sequencing
Genes
Genetic transformation
Hematology
Heterogeneity
In vivo methods and tests
Intensive
Internal Medicine
Leukemia
Leukemogenesis
Lymphocytes T
Medicine
Medicine & Public Health
Minimal residual disease
Oncology
Thymus
title The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20quiescent%20thymic%20progenitors%20in%20TAL/LMO2-induced%20T-ALL%20chemotolerance&rft.jtitle=Leukemia&rft.au=O%E2%80%99Connor,%20Kevin%20W.&rft.date=2024-05-01&rft.volume=38&rft.issue=5&rft.spage=951&rft.epage=962&rft.pages=951-962&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/s41375-024-02232-8&rft_dat=%3Cproquest_pubme%3E3051201801%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051201801&rft_id=info:pmid/38553571&rfr_iscdi=true