The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance
Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1...
Gespeichert in:
Veröffentlicht in: | Leukemia 2024-05, Vol.38 (5), p.951-962 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 962 |
---|---|
container_issue | 5 |
container_start_page | 951 |
container_title | Leukemia |
container_volume | 38 |
creator | O’Connor, Kevin W. Kishimoto, Kensei Kuzma, Irena O. Wagner, Kelsey P. Selway, Jonathan S. Roderick, Justine E. Karna, Keshab K. Gallagher, Kayleigh M. Hu, Kai Liu, Haibo Li, Rui Brehm, Michael A. Zhu, Lihua Julie Curtis, David J. Tremblay, Cedric S. Kelliher, Michelle A. |
description | Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In
TAL1
/
LMO
mouse models, double negative-3 (DN3; CD4
−
CD8
−
CD25
+
CD44
−
) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle–restricted profile and heightened
TAL1/LMO2
activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of
TAL
/
LMO
patient samples revealed a similar pattern in CD7
+
CD1a
−
thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that
Tal1
and
Lmo2
cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of
TAL1/LMO
-induced T-ALL and its clinical implications in therapy failure. |
doi_str_mv | 10.1038/s41375-024-02232-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11073972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051201801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b2d53b5209dea8cef1e0f23aea683d7861d652dc8d613cf60a82d3d6c64b84e53</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS0EomnhBVggS2zYmPpn7HFWKKqgIA2qKoW15dh3ElczdmrPIPXtcUhboIsuLC_Od4_v8UHoHaOfGBX6vDRMtJJQ3tTDBSf6BVqwplVESsleogXVuiVqyZsTdFrKDaUHUb1GJ0JLKWTLFuh6vQOc0wA49fh2DlAcxAlPu7sxOLzPaQsxTCkXHCJer7rz7scVJyH62YHHa7LqOux2MKapemQbHbxBr3o7FHh7f5-hn1-_rC--ke7q8vvFqiOu4WoiG-6l2EhOlx6sdtAzoD0XFqzSwrdaMa8k9057xYTrFbWae-GVU81GNyDFGfp89N3PmxH8Ye1sB7PPYbT5ziQbzP9KDDuzTb8MY7QVy5ZXh4_3DjndzlAmM4YafxhshDQXI-qvyraRTFT0wxP0Js051nyVkoxTpimrFD9SLqdSMvSP2zBqDpWZY2WmVmb-VGZ0HXr_b47HkYeOKiCOQKlS3EL--_Yztr8BTAGhTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051201801</pqid></control><display><type>article</type><title>The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance</title><source>SpringerLink Journals</source><creator>O’Connor, Kevin W. ; Kishimoto, Kensei ; Kuzma, Irena O. ; Wagner, Kelsey P. ; Selway, Jonathan S. ; Roderick, Justine E. ; Karna, Keshab K. ; Gallagher, Kayleigh M. ; Hu, Kai ; Liu, Haibo ; Li, Rui ; Brehm, Michael A. ; Zhu, Lihua Julie ; Curtis, David J. ; Tremblay, Cedric S. ; Kelliher, Michelle A.</creator><creatorcontrib>O’Connor, Kevin W. ; Kishimoto, Kensei ; Kuzma, Irena O. ; Wagner, Kelsey P. ; Selway, Jonathan S. ; Roderick, Justine E. ; Karna, Keshab K. ; Gallagher, Kayleigh M. ; Hu, Kai ; Liu, Haibo ; Li, Rui ; Brehm, Michael A. ; Zhu, Lihua Julie ; Curtis, David J. ; Tremblay, Cedric S. ; Kelliher, Michelle A.</creatorcontrib><description>Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In
TAL1
/
LMO
mouse models, double negative-3 (DN3; CD4
−
CD8
−
CD25
+
CD44
−
) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle–restricted profile and heightened
TAL1/LMO2
activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of
TAL
/
LMO
patient samples revealed a similar pattern in CD7
+
CD1a
−
thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that
Tal1
and
Lmo2
cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of
TAL1/LMO
-induced T-ALL and its clinical implications in therapy failure.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/s41375-024-02232-8</identifier><identifier>PMID: 38553571</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 38/91 ; 45 ; 631/67/1059/99 ; 631/67/1990/283/2125 ; 631/67/395 ; 631/67/70 ; 631/67/71 ; 64 ; 64/60 ; Acute lymphoblastic leukemia ; Animal models ; Cancer Research ; CD25 antigen ; CD4 antigen ; CD44 antigen ; CD7 antigen ; CD8 antigen ; Cell culture ; Cell cycle ; Critical Care Medicine ; Gene sequencing ; Genes ; Genetic transformation ; Hematology ; Heterogeneity ; In vivo methods and tests ; Intensive ; Internal Medicine ; Leukemia ; Leukemogenesis ; Lymphocytes T ; Medicine ; Medicine & Public Health ; Minimal residual disease ; Oncology ; Thymus</subject><ispartof>Leukemia, 2024-05, Vol.38 (5), p.951-962</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-b2d53b5209dea8cef1e0f23aea683d7861d652dc8d613cf60a82d3d6c64b84e53</cites><orcidid>0000-0001-9211-3659 ; 0000-0002-0745-1969 ; 0000-0002-6555-2581 ; 0000-0003-2396-776X ; 0000-0001-9497-0996 ; 0000-0001-5121-623X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41375-024-02232-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41375-024-02232-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38553571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Connor, Kevin W.</creatorcontrib><creatorcontrib>Kishimoto, Kensei</creatorcontrib><creatorcontrib>Kuzma, Irena O.</creatorcontrib><creatorcontrib>Wagner, Kelsey P.</creatorcontrib><creatorcontrib>Selway, Jonathan S.</creatorcontrib><creatorcontrib>Roderick, Justine E.</creatorcontrib><creatorcontrib>Karna, Keshab K.</creatorcontrib><creatorcontrib>Gallagher, Kayleigh M.</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Liu, Haibo</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Brehm, Michael A.</creatorcontrib><creatorcontrib>Zhu, Lihua Julie</creatorcontrib><creatorcontrib>Curtis, David J.</creatorcontrib><creatorcontrib>Tremblay, Cedric S.</creatorcontrib><creatorcontrib>Kelliher, Michelle A.</creatorcontrib><title>The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In
TAL1
/
LMO
mouse models, double negative-3 (DN3; CD4
−
CD8
−
CD25
+
CD44
−
) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle–restricted profile and heightened
TAL1/LMO2
activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of
TAL
/
LMO
patient samples revealed a similar pattern in CD7
+
CD1a
−
thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that
Tal1
and
Lmo2
cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of
TAL1/LMO
-induced T-ALL and its clinical implications in therapy failure.</description><subject>38/39</subject><subject>38/91</subject><subject>45</subject><subject>631/67/1059/99</subject><subject>631/67/1990/283/2125</subject><subject>631/67/395</subject><subject>631/67/70</subject><subject>631/67/71</subject><subject>64</subject><subject>64/60</subject><subject>Acute lymphoblastic leukemia</subject><subject>Animal models</subject><subject>Cancer Research</subject><subject>CD25 antigen</subject><subject>CD4 antigen</subject><subject>CD44 antigen</subject><subject>CD7 antigen</subject><subject>CD8 antigen</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Critical Care Medicine</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic transformation</subject><subject>Hematology</subject><subject>Heterogeneity</subject><subject>In vivo methods and tests</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemogenesis</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Minimal residual disease</subject><subject>Oncology</subject><subject>Thymus</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1uEzEUhS0EomnhBVggS2zYmPpn7HFWKKqgIA2qKoW15dh3ElczdmrPIPXtcUhboIsuLC_Od4_v8UHoHaOfGBX6vDRMtJJQ3tTDBSf6BVqwplVESsleogXVuiVqyZsTdFrKDaUHUb1GJ0JLKWTLFuh6vQOc0wA49fh2DlAcxAlPu7sxOLzPaQsxTCkXHCJer7rz7scVJyH62YHHa7LqOux2MKapemQbHbxBr3o7FHh7f5-hn1-_rC--ke7q8vvFqiOu4WoiG-6l2EhOlx6sdtAzoD0XFqzSwrdaMa8k9057xYTrFbWae-GVU81GNyDFGfp89N3PmxH8Ye1sB7PPYbT5ziQbzP9KDDuzTb8MY7QVy5ZXh4_3DjndzlAmM4YafxhshDQXI-qvyraRTFT0wxP0Js051nyVkoxTpimrFD9SLqdSMvSP2zBqDpWZY2WmVmb-VGZ0HXr_b47HkYeOKiCOQKlS3EL--_Yztr8BTAGhTw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>O’Connor, Kevin W.</creator><creator>Kishimoto, Kensei</creator><creator>Kuzma, Irena O.</creator><creator>Wagner, Kelsey P.</creator><creator>Selway, Jonathan S.</creator><creator>Roderick, Justine E.</creator><creator>Karna, Keshab K.</creator><creator>Gallagher, Kayleigh M.</creator><creator>Hu, Kai</creator><creator>Liu, Haibo</creator><creator>Li, Rui</creator><creator>Brehm, Michael A.</creator><creator>Zhu, Lihua Julie</creator><creator>Curtis, David J.</creator><creator>Tremblay, Cedric S.</creator><creator>Kelliher, Michelle A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9211-3659</orcidid><orcidid>https://orcid.org/0000-0002-0745-1969</orcidid><orcidid>https://orcid.org/0000-0002-6555-2581</orcidid><orcidid>https://orcid.org/0000-0003-2396-776X</orcidid><orcidid>https://orcid.org/0000-0001-9497-0996</orcidid><orcidid>https://orcid.org/0000-0001-5121-623X</orcidid></search><sort><creationdate>20240501</creationdate><title>The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance</title><author>O’Connor, Kevin W. ; Kishimoto, Kensei ; Kuzma, Irena O. ; Wagner, Kelsey P. ; Selway, Jonathan S. ; Roderick, Justine E. ; Karna, Keshab K. ; Gallagher, Kayleigh M. ; Hu, Kai ; Liu, Haibo ; Li, Rui ; Brehm, Michael A. ; Zhu, Lihua Julie ; Curtis, David J. ; Tremblay, Cedric S. ; Kelliher, Michelle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b2d53b5209dea8cef1e0f23aea683d7861d652dc8d613cf60a82d3d6c64b84e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>38/91</topic><topic>45</topic><topic>631/67/1059/99</topic><topic>631/67/1990/283/2125</topic><topic>631/67/395</topic><topic>631/67/70</topic><topic>631/67/71</topic><topic>64</topic><topic>64/60</topic><topic>Acute lymphoblastic leukemia</topic><topic>Animal models</topic><topic>Cancer Research</topic><topic>CD25 antigen</topic><topic>CD4 antigen</topic><topic>CD44 antigen</topic><topic>CD7 antigen</topic><topic>CD8 antigen</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Critical Care Medicine</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic transformation</topic><topic>Hematology</topic><topic>Heterogeneity</topic><topic>In vivo methods and tests</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemogenesis</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Minimal residual disease</topic><topic>Oncology</topic><topic>Thymus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Connor, Kevin W.</creatorcontrib><creatorcontrib>Kishimoto, Kensei</creatorcontrib><creatorcontrib>Kuzma, Irena O.</creatorcontrib><creatorcontrib>Wagner, Kelsey P.</creatorcontrib><creatorcontrib>Selway, Jonathan S.</creatorcontrib><creatorcontrib>Roderick, Justine E.</creatorcontrib><creatorcontrib>Karna, Keshab K.</creatorcontrib><creatorcontrib>Gallagher, Kayleigh M.</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Liu, Haibo</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Brehm, Michael A.</creatorcontrib><creatorcontrib>Zhu, Lihua Julie</creatorcontrib><creatorcontrib>Curtis, David J.</creatorcontrib><creatorcontrib>Tremblay, Cedric S.</creatorcontrib><creatorcontrib>Kelliher, Michelle A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Connor, Kevin W.</au><au>Kishimoto, Kensei</au><au>Kuzma, Irena O.</au><au>Wagner, Kelsey P.</au><au>Selway, Jonathan S.</au><au>Roderick, Justine E.</au><au>Karna, Keshab K.</au><au>Gallagher, Kayleigh M.</au><au>Hu, Kai</au><au>Liu, Haibo</au><au>Li, Rui</au><au>Brehm, Michael A.</au><au>Zhu, Lihua Julie</au><au>Curtis, David J.</au><au>Tremblay, Cedric S.</au><au>Kelliher, Michelle A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>38</volume><issue>5</issue><spage>951</spage><epage>962</epage><pages>951-962</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In
TAL1
/
LMO
mouse models, double negative-3 (DN3; CD4
−
CD8
−
CD25
+
CD44
−
) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle–restricted profile and heightened
TAL1/LMO2
activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of
TAL
/
LMO
patient samples revealed a similar pattern in CD7
+
CD1a
−
thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that
Tal1
and
Lmo2
cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of
TAL1/LMO
-induced T-ALL and its clinical implications in therapy failure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38553571</pmid><doi>10.1038/s41375-024-02232-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9211-3659</orcidid><orcidid>https://orcid.org/0000-0002-0745-1969</orcidid><orcidid>https://orcid.org/0000-0002-6555-2581</orcidid><orcidid>https://orcid.org/0000-0003-2396-776X</orcidid><orcidid>https://orcid.org/0000-0001-9497-0996</orcidid><orcidid>https://orcid.org/0000-0001-5121-623X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2024-05, Vol.38 (5), p.951-962 |
issn | 0887-6924 1476-5551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11073972 |
source | SpringerLink Journals |
subjects | 38/39 38/91 45 631/67/1059/99 631/67/1990/283/2125 631/67/395 631/67/70 631/67/71 64 64/60 Acute lymphoblastic leukemia Animal models Cancer Research CD25 antigen CD4 antigen CD44 antigen CD7 antigen CD8 antigen Cell culture Cell cycle Critical Care Medicine Gene sequencing Genes Genetic transformation Hematology Heterogeneity In vivo methods and tests Intensive Internal Medicine Leukemia Leukemogenesis Lymphocytes T Medicine Medicine & Public Health Minimal residual disease Oncology Thymus |
title | The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20quiescent%20thymic%20progenitors%20in%20TAL/LMO2-induced%20T-ALL%20chemotolerance&rft.jtitle=Leukemia&rft.au=O%E2%80%99Connor,%20Kevin%20W.&rft.date=2024-05-01&rft.volume=38&rft.issue=5&rft.spage=951&rft.epage=962&rft.pages=951-962&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/s41375-024-02232-8&rft_dat=%3Cproquest_pubme%3E3051201801%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051201801&rft_id=info:pmid/38553571&rfr_iscdi=true |