Multiple cell populations generate macrophage progenitors in the early yolk sac
Yolk sac (YS) CSF1 receptor positive (CSF1R + ) cells are thought to be the progenitors for tissue-resident macrophages present in various tissues. The YS progenitors for tissue-resident macrophages are referred to as erythroid–myeloid progenitors (EMPs). However, diverse types of hematopoietic prog...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2022-03, Vol.79 (3), p.159-159, Article 159 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 3 |
container_start_page | 159 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 79 |
creator | Ito, Chie Hikosaka-Kuniishi, Mari Yamazaki, Hidetoshi Yamane, Toshiyuki |
description | Yolk sac (YS) CSF1 receptor positive (CSF1R
+
) cells are thought to be the progenitors for tissue-resident macrophages present in various tissues. The YS progenitors for tissue-resident macrophages are referred to as erythroid–myeloid progenitors (EMPs). However, diverse types of hematopoietic progenitors are present in the early YS, thus it is not precisely known which type of hematopoietic cell gives rise to the CSF1R
+
lineage. In this study, an analysis was conducted to determine when CSF1R
+
progenitors appeared in the early YS. It showed that CSF1R
+
cells appeared in the YS as early as embryonic day 9 (E9) and that the earliest hematopoietic progenitors that differentiate into CSF1R
+
cells were found in E8. Since these progenitors possessed the capability to generate primitive erythroid cells, it was likely that primitive erythroid lineages shared progenitors with the CSF1R
+
lineage. Mutual antagonism appears to work between PU.1 and GATA1 when CSF1R
+
cells appear in the early YS. One day later (E9), multiple progenitors, including myeloid-restricted progenitors and multipotent progenitors, in the YS could immediately generate CSF1R
+
cells. These results suggest that EMPs are not an exclusive source for the CSF1R
+
lineage; rather, multiple hematopoietic cell populations give rise to CSF1R
+
lineage in the early YS. |
doi_str_mv | 10.1007/s00018-022-04203-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11073295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634537860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-f85931798b03256b7ebfed1aedcfd0c0a75a42af860721352ed618821bf856743</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EgrL8AQ7IEhcuAS9x7JwQqtgkUC8gcbOcdNKmuHGwE6T-e1xaynLg5JHne88zfggdU3JOCZEXgRBCVUIYS0jKCE_kFhrQWCU5kXR7XWeKveyh_RBmkRaKZbtojwvG0ixnAzR67G1XtxZwCdbi1rW9NV3tmoAn0IA3HeC5Kb1rp2YCuPUuXted8wHXDe6mgMF4u8ALZ19xMOUh2qmMDXC0Pg_Q88310_AueRjd3g-vHpIy5bRLKiVyTmWuCsKZyAoJRQVjamBcVmNSEiOFSZmpVEYko3FcGGdUKUaLqMxkyg_Q5cq37Yt5VEHTeWN16-u58QvtTK1_d5p6qifuXVNKJGe5iA5nawfv3noInZ7XYfkJpgHXB80yngou4wQRPf2Dzlzvm7jfkuJCCqlkpNiKir8VgodqMw0lehmYXgWmY2D6MzC9FJ383GMj-UooAnwFhNhqJuC_3_7H9gMFE6Gm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633575787</pqid></control><display><type>article</type><title>Multiple cell populations generate macrophage progenitors in the early yolk sac</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Ito, Chie ; Hikosaka-Kuniishi, Mari ; Yamazaki, Hidetoshi ; Yamane, Toshiyuki</creator><creatorcontrib>Ito, Chie ; Hikosaka-Kuniishi, Mari ; Yamazaki, Hidetoshi ; Yamane, Toshiyuki</creatorcontrib><description>Yolk sac (YS) CSF1 receptor positive (CSF1R
+
) cells are thought to be the progenitors for tissue-resident macrophages present in various tissues. The YS progenitors for tissue-resident macrophages are referred to as erythroid–myeloid progenitors (EMPs). However, diverse types of hematopoietic progenitors are present in the early YS, thus it is not precisely known which type of hematopoietic cell gives rise to the CSF1R
+
lineage. In this study, an analysis was conducted to determine when CSF1R
+
progenitors appeared in the early YS. It showed that CSF1R
+
cells appeared in the YS as early as embryonic day 9 (E9) and that the earliest hematopoietic progenitors that differentiate into CSF1R
+
cells were found in E8. Since these progenitors possessed the capability to generate primitive erythroid cells, it was likely that primitive erythroid lineages shared progenitors with the CSF1R
+
lineage. Mutual antagonism appears to work between PU.1 and GATA1 when CSF1R
+
cells appear in the early YS. One day later (E9), multiple progenitors, including myeloid-restricted progenitors and multipotent progenitors, in the YS could immediately generate CSF1R
+
cells. These results suggest that EMPs are not an exclusive source for the CSF1R
+
lineage; rather, multiple hematopoietic cell populations give rise to CSF1R
+
lineage in the early YS.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-022-04203-7</identifier><identifier>PMID: 35224692</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Differentiation ; Cell Lineage ; Embryonic Development ; Embryos ; Erythroid cells ; Female ; GATA-1 protein ; Genotype & phenotype ; Hematopoiesis ; Hematopoietic Stem Cells - physiology ; Hemopoiesis ; Life Sciences ; Macrophages ; Mice ; Original ; Original Article ; Population ; Populations ; Progenitor cells ; PU.1 protein ; Yolk sac ; Yolk Sac - growth & development ; Yolk Sac - immunology ; Yolk Sac - physiology ; Zebrafish</subject><ispartof>Cellular and molecular life sciences : CMLS, 2022-03, Vol.79 (3), p.159-159, Article 159</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-f85931798b03256b7ebfed1aedcfd0c0a75a42af860721352ed618821bf856743</citedby><cites>FETCH-LOGICAL-c431t-f85931798b03256b7ebfed1aedcfd0c0a75a42af860721352ed618821bf856743</cites><orcidid>0000-0001-9906-4714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073295/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073295/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35224692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Chie</creatorcontrib><creatorcontrib>Hikosaka-Kuniishi, Mari</creatorcontrib><creatorcontrib>Yamazaki, Hidetoshi</creatorcontrib><creatorcontrib>Yamane, Toshiyuki</creatorcontrib><title>Multiple cell populations generate macrophage progenitors in the early yolk sac</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Yolk sac (YS) CSF1 receptor positive (CSF1R
+
) cells are thought to be the progenitors for tissue-resident macrophages present in various tissues. The YS progenitors for tissue-resident macrophages are referred to as erythroid–myeloid progenitors (EMPs). However, diverse types of hematopoietic progenitors are present in the early YS, thus it is not precisely known which type of hematopoietic cell gives rise to the CSF1R
+
lineage. In this study, an analysis was conducted to determine when CSF1R
+
progenitors appeared in the early YS. It showed that CSF1R
+
cells appeared in the YS as early as embryonic day 9 (E9) and that the earliest hematopoietic progenitors that differentiate into CSF1R
+
cells were found in E8. Since these progenitors possessed the capability to generate primitive erythroid cells, it was likely that primitive erythroid lineages shared progenitors with the CSF1R
+
lineage. Mutual antagonism appears to work between PU.1 and GATA1 when CSF1R
+
cells appear in the early YS. One day later (E9), multiple progenitors, including myeloid-restricted progenitors and multipotent progenitors, in the YS could immediately generate CSF1R
+
cells. These results suggest that EMPs are not an exclusive source for the CSF1R
+
lineage; rather, multiple hematopoietic cell populations give rise to CSF1R
+
lineage in the early YS.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Embryonic Development</subject><subject>Embryos</subject><subject>Erythroid cells</subject><subject>Female</subject><subject>GATA-1 protein</subject><subject>Genotype & phenotype</subject><subject>Hematopoiesis</subject><subject>Hematopoietic Stem Cells - physiology</subject><subject>Hemopoiesis</subject><subject>Life Sciences</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Original</subject><subject>Original Article</subject><subject>Population</subject><subject>Populations</subject><subject>Progenitor cells</subject><subject>PU.1 protein</subject><subject>Yolk sac</subject><subject>Yolk Sac - growth & development</subject><subject>Yolk Sac - immunology</subject><subject>Yolk Sac - physiology</subject><subject>Zebrafish</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUlPwzAQhS0EgrL8AQ7IEhcuAS9x7JwQqtgkUC8gcbOcdNKmuHGwE6T-e1xaynLg5JHne88zfggdU3JOCZEXgRBCVUIYS0jKCE_kFhrQWCU5kXR7XWeKveyh_RBmkRaKZbtojwvG0ixnAzR67G1XtxZwCdbi1rW9NV3tmoAn0IA3HeC5Kb1rp2YCuPUuXted8wHXDe6mgMF4u8ALZ19xMOUh2qmMDXC0Pg_Q88310_AueRjd3g-vHpIy5bRLKiVyTmWuCsKZyAoJRQVjamBcVmNSEiOFSZmpVEYko3FcGGdUKUaLqMxkyg_Q5cq37Yt5VEHTeWN16-u58QvtTK1_d5p6qifuXVNKJGe5iA5nawfv3noInZ7XYfkJpgHXB80yngou4wQRPf2Dzlzvm7jfkuJCCqlkpNiKir8VgodqMw0lehmYXgWmY2D6MzC9FJ383GMj-UooAnwFhNhqJuC_3_7H9gMFE6Gm</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ito, Chie</creator><creator>Hikosaka-Kuniishi, Mari</creator><creator>Yamazaki, Hidetoshi</creator><creator>Yamane, Toshiyuki</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9906-4714</orcidid></search><sort><creationdate>20220301</creationdate><title>Multiple cell populations generate macrophage progenitors in the early yolk sac</title><author>Ito, Chie ; Hikosaka-Kuniishi, Mari ; Yamazaki, Hidetoshi ; Yamane, Toshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-f85931798b03256b7ebfed1aedcfd0c0a75a42af860721352ed618821bf856743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Embryonic Development</topic><topic>Embryos</topic><topic>Erythroid cells</topic><topic>Female</topic><topic>GATA-1 protein</topic><topic>Genotype & phenotype</topic><topic>Hematopoiesis</topic><topic>Hematopoietic Stem Cells - physiology</topic><topic>Hemopoiesis</topic><topic>Life Sciences</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Original</topic><topic>Original Article</topic><topic>Population</topic><topic>Populations</topic><topic>Progenitor cells</topic><topic>PU.1 protein</topic><topic>Yolk sac</topic><topic>Yolk Sac - growth & development</topic><topic>Yolk Sac - immunology</topic><topic>Yolk Sac - physiology</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Chie</creatorcontrib><creatorcontrib>Hikosaka-Kuniishi, Mari</creatorcontrib><creatorcontrib>Yamazaki, Hidetoshi</creatorcontrib><creatorcontrib>Yamane, Toshiyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Chie</au><au>Hikosaka-Kuniishi, Mari</au><au>Yamazaki, Hidetoshi</au><au>Yamane, Toshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple cell populations generate macrophage progenitors in the early yolk sac</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>79</volume><issue>3</issue><spage>159</spage><epage>159</epage><pages>159-159</pages><artnum>159</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Yolk sac (YS) CSF1 receptor positive (CSF1R
+
) cells are thought to be the progenitors for tissue-resident macrophages present in various tissues. The YS progenitors for tissue-resident macrophages are referred to as erythroid–myeloid progenitors (EMPs). However, diverse types of hematopoietic progenitors are present in the early YS, thus it is not precisely known which type of hematopoietic cell gives rise to the CSF1R
+
lineage. In this study, an analysis was conducted to determine when CSF1R
+
progenitors appeared in the early YS. It showed that CSF1R
+
cells appeared in the YS as early as embryonic day 9 (E9) and that the earliest hematopoietic progenitors that differentiate into CSF1R
+
cells were found in E8. Since these progenitors possessed the capability to generate primitive erythroid cells, it was likely that primitive erythroid lineages shared progenitors with the CSF1R
+
lineage. Mutual antagonism appears to work between PU.1 and GATA1 when CSF1R
+
cells appear in the early YS. One day later (E9), multiple progenitors, including myeloid-restricted progenitors and multipotent progenitors, in the YS could immediately generate CSF1R
+
cells. These results suggest that EMPs are not an exclusive source for the CSF1R
+
lineage; rather, multiple hematopoietic cell populations give rise to CSF1R
+
lineage in the early YS.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35224692</pmid><doi>10.1007/s00018-022-04203-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9906-4714</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2022-03, Vol.79 (3), p.159-159, Article 159 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11073295 |
source | MEDLINE; SpringerNature Journals; PubMed Central |
subjects | Animals Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Cell Differentiation Cell Lineage Embryonic Development Embryos Erythroid cells Female GATA-1 protein Genotype & phenotype Hematopoiesis Hematopoietic Stem Cells - physiology Hemopoiesis Life Sciences Macrophages Mice Original Original Article Population Populations Progenitor cells PU.1 protein Yolk sac Yolk Sac - growth & development Yolk Sac - immunology Yolk Sac - physiology Zebrafish |
title | Multiple cell populations generate macrophage progenitors in the early yolk sac |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20cell%20populations%20generate%20macrophage%20progenitors%20in%20the%20early%20yolk%20sac&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Ito,%20Chie&rft.date=2022-03-01&rft.volume=79&rft.issue=3&rft.spage=159&rft.epage=159&rft.pages=159-159&rft.artnum=159&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-022-04203-7&rft_dat=%3Cproquest_pubme%3E2634537860%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633575787&rft_id=info:pmid/35224692&rfr_iscdi=true |