Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM
Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2023-10, Vol.80 (10), p.295-295, Article 295 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 10 |
container_start_page | 295 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 80 |
creator | Belapurkar, Vivek Mahadeva Swamy, H S Singh, Nivedita Kedia, Shekhar Setty, Subba Rao Gangi Jose, Mini Nair, Deepak |
description | Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the “Y
682
ENPTY
687
” domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y
682
ENPTY
687
, namely, APP–Δ9 and APP–Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP–Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP–SWE, while APP–Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer’s disease (AD). |
doi_str_mv | 10.1007/s00018-023-04939-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11072284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866758271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-e0d62f906717bdc385ae75f3b3b1bcf620dff1d491ba1b310735512b1ea024fd3</originalsourceid><addsrcrecordid>eNp9kUmLFTEUhYModtv6B1xIwI2b0gxVSdVKpHGCFkUU3IUMN6_TVlWeScqmVv518wbbYeEqF853TnJzEHpIyVNKiHyWCSG0bwjjDWkHPjTXt9ApbRlpBiLp7eMsevblBN3L-arSXc_EXXTCpWSiE8Mp-vER9NiUMAG-hAIpbmCGUFYcPc7LNukpjmCXUSesc4bJjHtJT-sYg8PbVMWUY6pTLBBmHDKeoquGAg6bFesZw-yiXUuwOIX8FXttSzV8eHv-4uLdfXTH6zHDg-N5hj6_evnp_E1z8f71Dmhsy2lpgDjB_ECEpNI4y_tOg-w8N9xQY71gxHlPXTtQo6nhlEjedZQZCpqw1jt-hp4fcreLmcBZmEvSo9qmMOm0qqiD-luZw6XaxO-K1izG-rYmPDkmpPhtgVzUFLKFcdQzxCUr1gsh6_9KWtHH_6BXcUlz3W9P0b4dxC6QHSibYs4J_M1rKFG7gtWhYFULVvuC1XU1PfpzjxvLr0YrwA9ArtK8gfT77v_E_gRqBbS6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866184964</pqid></control><display><type>article</type><title>Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Belapurkar, Vivek ; Mahadeva Swamy, H S ; Singh, Nivedita ; Kedia, Shekhar ; Setty, Subba Rao Gangi ; Jose, Mini ; Nair, Deepak</creator><creatorcontrib>Belapurkar, Vivek ; Mahadeva Swamy, H S ; Singh, Nivedita ; Kedia, Shekhar ; Setty, Subba Rao Gangi ; Jose, Mini ; Nair, Deepak</creatorcontrib><description>Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the “Y
682
ENPTY
687
” domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y
682
ENPTY
687
, namely, APP–Δ9 and APP–Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP–Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP–SWE, while APP–Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer’s disease (AD).</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-023-04939-w</identifier><identifier>PMID: 37726569</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alzheimer Disease - genetics ; Alzheimer's disease ; Amyloid beta-Protein Precursor - genetics ; Amyloid precursor protein ; Arthrogryposis ; Assembly ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Deletion ; Deletion mutant ; Heterogeneity ; Humans ; Lateral diffusion ; Life Sciences ; Localization ; Membrane trafficking ; Monomeric Clathrin Assembly Proteins - genetics ; Mutants ; Mutation ; Neurodegenerative diseases ; Original ; Original Article ; Postsynaptic density ; Precursors ; Proteins ; Risk Factors</subject><ispartof>Cellular and molecular life sciences : CMLS, 2023-10, Vol.80 (10), p.295-295, Article 295</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-e0d62f906717bdc385ae75f3b3b1bcf620dff1d491ba1b310735512b1ea024fd3</citedby><cites>FETCH-LOGICAL-c431t-e0d62f906717bdc385ae75f3b3b1bcf620dff1d491ba1b310735512b1ea024fd3</cites><orcidid>0000-0003-4035-2900 ; 0000-0002-1132-0873 ; 0000-0002-9322-979X ; 0000-0002-9435-5237 ; 0000-0002-2103-1653 ; 0009-0005-2310-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072284/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072284/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37726569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belapurkar, Vivek</creatorcontrib><creatorcontrib>Mahadeva Swamy, H S</creatorcontrib><creatorcontrib>Singh, Nivedita</creatorcontrib><creatorcontrib>Kedia, Shekhar</creatorcontrib><creatorcontrib>Setty, Subba Rao Gangi</creatorcontrib><creatorcontrib>Jose, Mini</creatorcontrib><creatorcontrib>Nair, Deepak</creatorcontrib><title>Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the “Y
682
ENPTY
687
” domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y
682
ENPTY
687
, namely, APP–Δ9 and APP–Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP–Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP–SWE, while APP–Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer’s disease (AD).</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Amyloid precursor protein</subject><subject>Arthrogryposis</subject><subject>Assembly</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Deletion</subject><subject>Deletion mutant</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Lateral diffusion</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Membrane trafficking</subject><subject>Monomeric Clathrin Assembly Proteins - genetics</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Original</subject><subject>Original Article</subject><subject>Postsynaptic density</subject><subject>Precursors</subject><subject>Proteins</subject><subject>Risk Factors</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUmLFTEUhYModtv6B1xIwI2b0gxVSdVKpHGCFkUU3IUMN6_TVlWeScqmVv518wbbYeEqF853TnJzEHpIyVNKiHyWCSG0bwjjDWkHPjTXt9ApbRlpBiLp7eMsevblBN3L-arSXc_EXXTCpWSiE8Mp-vER9NiUMAG-hAIpbmCGUFYcPc7LNukpjmCXUSesc4bJjHtJT-sYg8PbVMWUY6pTLBBmHDKeoquGAg6bFesZw-yiXUuwOIX8FXttSzV8eHv-4uLdfXTH6zHDg-N5hj6_evnp_E1z8f71Dmhsy2lpgDjB_ECEpNI4y_tOg-w8N9xQY71gxHlPXTtQo6nhlEjedZQZCpqw1jt-hp4fcreLmcBZmEvSo9qmMOm0qqiD-luZw6XaxO-K1izG-rYmPDkmpPhtgVzUFLKFcdQzxCUr1gsh6_9KWtHH_6BXcUlz3W9P0b4dxC6QHSibYs4J_M1rKFG7gtWhYFULVvuC1XU1PfpzjxvLr0YrwA9ArtK8gfT77v_E_gRqBbS6</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Belapurkar, Vivek</creator><creator>Mahadeva Swamy, H S</creator><creator>Singh, Nivedita</creator><creator>Kedia, Shekhar</creator><creator>Setty, Subba Rao Gangi</creator><creator>Jose, Mini</creator><creator>Nair, Deepak</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4035-2900</orcidid><orcidid>https://orcid.org/0000-0002-1132-0873</orcidid><orcidid>https://orcid.org/0000-0002-9322-979X</orcidid><orcidid>https://orcid.org/0000-0002-9435-5237</orcidid><orcidid>https://orcid.org/0000-0002-2103-1653</orcidid><orcidid>https://orcid.org/0009-0005-2310-7913</orcidid></search><sort><creationdate>20231001</creationdate><title>Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM</title><author>Belapurkar, Vivek ; Mahadeva Swamy, H S ; Singh, Nivedita ; Kedia, Shekhar ; Setty, Subba Rao Gangi ; Jose, Mini ; Nair, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-e0d62f906717bdc385ae75f3b3b1bcf620dff1d491ba1b310735512b1ea024fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Amyloid precursor protein</topic><topic>Arthrogryposis</topic><topic>Assembly</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Deletion</topic><topic>Deletion mutant</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Lateral diffusion</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Membrane trafficking</topic><topic>Monomeric Clathrin Assembly Proteins - genetics</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Original</topic><topic>Original Article</topic><topic>Postsynaptic density</topic><topic>Precursors</topic><topic>Proteins</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belapurkar, Vivek</creatorcontrib><creatorcontrib>Mahadeva Swamy, H S</creatorcontrib><creatorcontrib>Singh, Nivedita</creatorcontrib><creatorcontrib>Kedia, Shekhar</creatorcontrib><creatorcontrib>Setty, Subba Rao Gangi</creatorcontrib><creatorcontrib>Jose, Mini</creatorcontrib><creatorcontrib>Nair, Deepak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belapurkar, Vivek</au><au>Mahadeva Swamy, H S</au><au>Singh, Nivedita</au><au>Kedia, Shekhar</au><au>Setty, Subba Rao Gangi</au><au>Jose, Mini</au><au>Nair, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>80</volume><issue>10</issue><spage>295</spage><epage>295</epage><pages>295-295</pages><artnum>295</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the “Y
682
ENPTY
687
” domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y
682
ENPTY
687
, namely, APP–Δ9 and APP–Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP–Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP–SWE, while APP–Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer’s disease (AD).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37726569</pmid><doi>10.1007/s00018-023-04939-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4035-2900</orcidid><orcidid>https://orcid.org/0000-0002-1132-0873</orcidid><orcidid>https://orcid.org/0000-0002-9322-979X</orcidid><orcidid>https://orcid.org/0000-0002-9435-5237</orcidid><orcidid>https://orcid.org/0000-0002-2103-1653</orcidid><orcidid>https://orcid.org/0009-0005-2310-7913</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2023-10, Vol.80 (10), p.295-295, Article 295 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11072284 |
source | MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Alzheimer Disease - genetics Alzheimer's disease Amyloid beta-Protein Precursor - genetics Amyloid precursor protein Arthrogryposis Assembly Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Deletion Deletion mutant Heterogeneity Humans Lateral diffusion Life Sciences Localization Membrane trafficking Monomeric Clathrin Assembly Proteins - genetics Mutants Mutation Neurodegenerative diseases Original Original Article Postsynaptic density Precursors Proteins Risk Factors |
title | Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20heterogeneity%20of%20supramolecular%20assembly%20of%20amyloid%20precursor%20protein%20is%20modulated%20by%20an%20endocytic%20risk%20factor%20PICALM&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Belapurkar,%20Vivek&rft.date=2023-10-01&rft.volume=80&rft.issue=10&rft.spage=295&rft.epage=295&rft.pages=295-295&rft.artnum=295&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-023-04939-w&rft_dat=%3Cproquest_pubme%3E2866758271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866184964&rft_id=info:pmid/37726569&rfr_iscdi=true |