Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM

Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2023-10, Vol.80 (10), p.295-295, Article 295
Hauptverfasser: Belapurkar, Vivek, Mahadeva Swamy, H S, Singh, Nivedita, Kedia, Shekhar, Setty, Subba Rao Gangi, Jose, Mini, Nair, Deepak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 10
container_start_page 295
container_title Cellular and molecular life sciences : CMLS
container_volume 80
creator Belapurkar, Vivek
Mahadeva Swamy, H S
Singh, Nivedita
Kedia, Shekhar
Setty, Subba Rao Gangi
Jose, Mini
Nair, Deepak
description Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the “Y 682 ENPTY 687 ” domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y 682 ENPTY 687 , namely, APP–Δ9 and APP–Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP–Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP–SWE, while APP–Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer’s disease (AD).
doi_str_mv 10.1007/s00018-023-04939-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11072284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866758271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-e0d62f906717bdc385ae75f3b3b1bcf620dff1d491ba1b310735512b1ea024fd3</originalsourceid><addsrcrecordid>eNp9kUmLFTEUhYModtv6B1xIwI2b0gxVSdVKpHGCFkUU3IUMN6_TVlWeScqmVv518wbbYeEqF853TnJzEHpIyVNKiHyWCSG0bwjjDWkHPjTXt9ApbRlpBiLp7eMsevblBN3L-arSXc_EXXTCpWSiE8Mp-vER9NiUMAG-hAIpbmCGUFYcPc7LNukpjmCXUSesc4bJjHtJT-sYg8PbVMWUY6pTLBBmHDKeoquGAg6bFesZw-yiXUuwOIX8FXttSzV8eHv-4uLdfXTH6zHDg-N5hj6_evnp_E1z8f71Dmhsy2lpgDjB_ECEpNI4y_tOg-w8N9xQY71gxHlPXTtQo6nhlEjedZQZCpqw1jt-hp4fcreLmcBZmEvSo9qmMOm0qqiD-luZw6XaxO-K1izG-rYmPDkmpPhtgVzUFLKFcdQzxCUr1gsh6_9KWtHH_6BXcUlz3W9P0b4dxC6QHSibYs4J_M1rKFG7gtWhYFULVvuC1XU1PfpzjxvLr0YrwA9ArtK8gfT77v_E_gRqBbS6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866184964</pqid></control><display><type>article</type><title>Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Belapurkar, Vivek ; Mahadeva Swamy, H S ; Singh, Nivedita ; Kedia, Shekhar ; Setty, Subba Rao Gangi ; Jose, Mini ; Nair, Deepak</creator><creatorcontrib>Belapurkar, Vivek ; Mahadeva Swamy, H S ; Singh, Nivedita ; Kedia, Shekhar ; Setty, Subba Rao Gangi ; Jose, Mini ; Nair, Deepak</creatorcontrib><description>Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the “Y 682 ENPTY 687 ” domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y 682 ENPTY 687 , namely, APP–Δ9 and APP–Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP–Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP–SWE, while APP–Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer’s disease (AD).</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-023-04939-w</identifier><identifier>PMID: 37726569</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alzheimer Disease - genetics ; Alzheimer's disease ; Amyloid beta-Protein Precursor - genetics ; Amyloid precursor protein ; Arthrogryposis ; Assembly ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Deletion ; Deletion mutant ; Heterogeneity ; Humans ; Lateral diffusion ; Life Sciences ; Localization ; Membrane trafficking ; Monomeric Clathrin Assembly Proteins - genetics ; Mutants ; Mutation ; Neurodegenerative diseases ; Original ; Original Article ; Postsynaptic density ; Precursors ; Proteins ; Risk Factors</subject><ispartof>Cellular and molecular life sciences : CMLS, 2023-10, Vol.80 (10), p.295-295, Article 295</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-e0d62f906717bdc385ae75f3b3b1bcf620dff1d491ba1b310735512b1ea024fd3</citedby><cites>FETCH-LOGICAL-c431t-e0d62f906717bdc385ae75f3b3b1bcf620dff1d491ba1b310735512b1ea024fd3</cites><orcidid>0000-0003-4035-2900 ; 0000-0002-1132-0873 ; 0000-0002-9322-979X ; 0000-0002-9435-5237 ; 0000-0002-2103-1653 ; 0009-0005-2310-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072284/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072284/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37726569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belapurkar, Vivek</creatorcontrib><creatorcontrib>Mahadeva Swamy, H S</creatorcontrib><creatorcontrib>Singh, Nivedita</creatorcontrib><creatorcontrib>Kedia, Shekhar</creatorcontrib><creatorcontrib>Setty, Subba Rao Gangi</creatorcontrib><creatorcontrib>Jose, Mini</creatorcontrib><creatorcontrib>Nair, Deepak</creatorcontrib><title>Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the “Y 682 ENPTY 687 ” domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y 682 ENPTY 687 , namely, APP–Δ9 and APP–Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP–Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP–SWE, while APP–Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer’s disease (AD).</description><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Amyloid precursor protein</subject><subject>Arthrogryposis</subject><subject>Assembly</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Deletion</subject><subject>Deletion mutant</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Lateral diffusion</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Membrane trafficking</subject><subject>Monomeric Clathrin Assembly Proteins - genetics</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Original</subject><subject>Original Article</subject><subject>Postsynaptic density</subject><subject>Precursors</subject><subject>Proteins</subject><subject>Risk Factors</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUmLFTEUhYModtv6B1xIwI2b0gxVSdVKpHGCFkUU3IUMN6_TVlWeScqmVv518wbbYeEqF853TnJzEHpIyVNKiHyWCSG0bwjjDWkHPjTXt9ApbRlpBiLp7eMsevblBN3L-arSXc_EXXTCpWSiE8Mp-vER9NiUMAG-hAIpbmCGUFYcPc7LNukpjmCXUSesc4bJjHtJT-sYg8PbVMWUY6pTLBBmHDKeoquGAg6bFesZw-yiXUuwOIX8FXttSzV8eHv-4uLdfXTH6zHDg-N5hj6_evnp_E1z8f71Dmhsy2lpgDjB_ECEpNI4y_tOg-w8N9xQY71gxHlPXTtQo6nhlEjedZQZCpqw1jt-hp4fcreLmcBZmEvSo9qmMOm0qqiD-luZw6XaxO-K1izG-rYmPDkmpPhtgVzUFLKFcdQzxCUr1gsh6_9KWtHH_6BXcUlz3W9P0b4dxC6QHSibYs4J_M1rKFG7gtWhYFULVvuC1XU1PfpzjxvLr0YrwA9ArtK8gfT77v_E_gRqBbS6</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Belapurkar, Vivek</creator><creator>Mahadeva Swamy, H S</creator><creator>Singh, Nivedita</creator><creator>Kedia, Shekhar</creator><creator>Setty, Subba Rao Gangi</creator><creator>Jose, Mini</creator><creator>Nair, Deepak</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4035-2900</orcidid><orcidid>https://orcid.org/0000-0002-1132-0873</orcidid><orcidid>https://orcid.org/0000-0002-9322-979X</orcidid><orcidid>https://orcid.org/0000-0002-9435-5237</orcidid><orcidid>https://orcid.org/0000-0002-2103-1653</orcidid><orcidid>https://orcid.org/0009-0005-2310-7913</orcidid></search><sort><creationdate>20231001</creationdate><title>Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM</title><author>Belapurkar, Vivek ; Mahadeva Swamy, H S ; Singh, Nivedita ; Kedia, Shekhar ; Setty, Subba Rao Gangi ; Jose, Mini ; Nair, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-e0d62f906717bdc385ae75f3b3b1bcf620dff1d491ba1b310735512b1ea024fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Amyloid precursor protein</topic><topic>Arthrogryposis</topic><topic>Assembly</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Deletion</topic><topic>Deletion mutant</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Lateral diffusion</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Membrane trafficking</topic><topic>Monomeric Clathrin Assembly Proteins - genetics</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Original</topic><topic>Original Article</topic><topic>Postsynaptic density</topic><topic>Precursors</topic><topic>Proteins</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belapurkar, Vivek</creatorcontrib><creatorcontrib>Mahadeva Swamy, H S</creatorcontrib><creatorcontrib>Singh, Nivedita</creatorcontrib><creatorcontrib>Kedia, Shekhar</creatorcontrib><creatorcontrib>Setty, Subba Rao Gangi</creatorcontrib><creatorcontrib>Jose, Mini</creatorcontrib><creatorcontrib>Nair, Deepak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belapurkar, Vivek</au><au>Mahadeva Swamy, H S</au><au>Singh, Nivedita</au><au>Kedia, Shekhar</au><au>Setty, Subba Rao Gangi</au><au>Jose, Mini</au><au>Nair, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>80</volume><issue>10</issue><spage>295</spage><epage>295</epage><pages>295-295</pages><artnum>295</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or “nanodomains” has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer’s disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the “Y 682 ENPTY 687 ” domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y 682 ENPTY 687 , namely, APP–Δ9 and APP–Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP–Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP–SWE, while APP–Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer’s disease (AD).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37726569</pmid><doi>10.1007/s00018-023-04939-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4035-2900</orcidid><orcidid>https://orcid.org/0000-0002-1132-0873</orcidid><orcidid>https://orcid.org/0000-0002-9322-979X</orcidid><orcidid>https://orcid.org/0000-0002-9435-5237</orcidid><orcidid>https://orcid.org/0000-0002-2103-1653</orcidid><orcidid>https://orcid.org/0009-0005-2310-7913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2023-10, Vol.80 (10), p.295-295, Article 295
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11072284
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Alzheimer Disease - genetics
Alzheimer's disease
Amyloid beta-Protein Precursor - genetics
Amyloid precursor protein
Arthrogryposis
Assembly
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Deletion
Deletion mutant
Heterogeneity
Humans
Lateral diffusion
Life Sciences
Localization
Membrane trafficking
Monomeric Clathrin Assembly Proteins - genetics
Mutants
Mutation
Neurodegenerative diseases
Original
Original Article
Postsynaptic density
Precursors
Proteins
Risk Factors
title Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20heterogeneity%20of%20supramolecular%20assembly%20of%20amyloid%20precursor%20protein%20is%20modulated%20by%20an%20endocytic%20risk%20factor%20PICALM&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Belapurkar,%20Vivek&rft.date=2023-10-01&rft.volume=80&rft.issue=10&rft.spage=295&rft.epage=295&rft.pages=295-295&rft.artnum=295&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-023-04939-w&rft_dat=%3Cproquest_pubme%3E2866758271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866184964&rft_id=info:pmid/37726569&rfr_iscdi=true