Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects

Automated sensors have potential to standardize and expand the monitoring of insects across the globe. As one of the most scalable and fastest developing sensor technologies, we describe a framework for automated, image-based monitoring of nocturnal insects-from sensor development and field deployme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2024-06, Vol.379 (1904), p.20230108-20230108
Hauptverfasser: Roy, D B, Alison, J, August, T A, Bélisle, M, Bjerge, K, Bowden, J J, Bunsen, M J, Cunha, F, Geissmann, Q, Goldmann, K, Gomez-Segura, A, Jain, A, Huijbers, C, Larrivée, M, Lawson, J L, Mann, H M, Mazerolle, M J, McFarland, K P, Pasi, L, Peters, S, Pinoy, N, Rolnick, D, Skinner, G L, Strickson, O T, Svenning, A, Teagle, S, Høye, T T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20230108
container_issue 1904
container_start_page 20230108
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 379
creator Roy, D B
Alison, J
August, T A
Bélisle, M
Bjerge, K
Bowden, J J
Bunsen, M J
Cunha, F
Geissmann, Q
Goldmann, K
Gomez-Segura, A
Jain, A
Huijbers, C
Larrivée, M
Lawson, J L
Mann, H M
Mazerolle, M J
McFarland, K P
Pasi, L
Peters, S
Pinoy, N
Rolnick, D
Skinner, G L
Strickson, O T
Svenning, A
Teagle, S
Høye, T T
description Automated sensors have potential to standardize and expand the monitoring of insects across the globe. As one of the most scalable and fastest developing sensor technologies, we describe a framework for automated, image-based monitoring of nocturnal insects-from sensor development and field deployment to workflows for data processing and publishing. Sensors comprise a light to attract insects, a camera for collecting images and a computer for scheduling, data storage and processing. Metadata is important to describe sampling schedules that balance the capture of relevant ecological information against power and data storage limitations. Large data volumes of images from automated systems necessitate scalable and effective data processing. We describe computer vision approaches for the detection, tracking and classification of insects, including models built from existing aggregations of labelled insect images. Data from automated camera systems necessitate approaches that account for inherent biases. We advocate models that explicitly correct for bias in species occurrence or abundance estimates resulting from the imperfect detection of species or individuals present during sampling occasions. We propose ten priorities towards a step-change in automated monitoring of nocturnal insects, a vital task in the face of rapid biodiversity loss from global threats. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
doi_str_mv 10.1098/rstb.2023.0108
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051423630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-3b86e791cca23f3f9b229801e914693bf62e9ada9376b1fd5b1fc0578b315af83</originalsourceid><addsrcrecordid>eNpVkU1PHDEMhiNExS60V44oRw6dxUnmK6dqtWoL0kpc4IiiTCZZ0s4kS5wFwa_vrPhQudiW_Pq15YeQUwYLBrK9SJi7BQcuFsCgPSBzVjas4LKBQzIHWfOiLUU9I8eIfwBAVk15RGaibaBiEubk7iY-6dQj1RSzDv1U-xfbU5f0aJ9i-ktdTHR5VWhEj9n236kf9cYWncZJNsbgc0w-bGh0NESTdynogfqA1mT8Sr44PaD99pZPyO2vnzery2J9_ftqtVwXpqrLXIiurW0jmTGaCyec7DiXLTArWVlL0bmaW6l7LUVTd8z11RQMVE3bCVZp14oT8uPVd7vrRtsbG3LSg9qm6db0rKL26nMn-Hu1iY-KMWiAV-XkcP7mkOLDzmJWo0djh0EHG3eoxPSvkotawCRdvEpNiojJuo89DNQeitpDUXsoag9lGjj7_7oP-TsF8Q9bJ4q2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051423630</pqid></control><display><type>article</type><title>Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects</title><source>MEDLINE</source><source>PubMed Central</source><creator>Roy, D B ; Alison, J ; August, T A ; Bélisle, M ; Bjerge, K ; Bowden, J J ; Bunsen, M J ; Cunha, F ; Geissmann, Q ; Goldmann, K ; Gomez-Segura, A ; Jain, A ; Huijbers, C ; Larrivée, M ; Lawson, J L ; Mann, H M ; Mazerolle, M J ; McFarland, K P ; Pasi, L ; Peters, S ; Pinoy, N ; Rolnick, D ; Skinner, G L ; Strickson, O T ; Svenning, A ; Teagle, S ; Høye, T T</creator><creatorcontrib>Roy, D B ; Alison, J ; August, T A ; Bélisle, M ; Bjerge, K ; Bowden, J J ; Bunsen, M J ; Cunha, F ; Geissmann, Q ; Goldmann, K ; Gomez-Segura, A ; Jain, A ; Huijbers, C ; Larrivée, M ; Lawson, J L ; Mann, H M ; Mazerolle, M J ; McFarland, K P ; Pasi, L ; Peters, S ; Pinoy, N ; Rolnick, D ; Skinner, G L ; Strickson, O T ; Svenning, A ; Teagle, S ; Høye, T T</creatorcontrib><description>Automated sensors have potential to standardize and expand the monitoring of insects across the globe. As one of the most scalable and fastest developing sensor technologies, we describe a framework for automated, image-based monitoring of nocturnal insects-from sensor development and field deployment to workflows for data processing and publishing. Sensors comprise a light to attract insects, a camera for collecting images and a computer for scheduling, data storage and processing. Metadata is important to describe sampling schedules that balance the capture of relevant ecological information against power and data storage limitations. Large data volumes of images from automated systems necessitate scalable and effective data processing. We describe computer vision approaches for the detection, tracking and classification of insects, including models built from existing aggregations of labelled insect images. Data from automated camera systems necessitate approaches that account for inherent biases. We advocate models that explicitly correct for bias in species occurrence or abundance estimates resulting from the imperfect detection of species or individuals present during sampling occasions. We propose ten priorities towards a step-change in automated monitoring of nocturnal insects, a vital task in the face of rapid biodiversity loss from global threats. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2023.0108</identifier><identifier>PMID: 38705190</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Artificial Intelligence ; Biodiversity ; Image Processing, Computer-Assisted - methods ; Insecta - physiology</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2024-06, Vol.379 (1904), p.20230108-20230108</ispartof><rights>2024 The Authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-3b86e791cca23f3f9b229801e914693bf62e9ada9376b1fd5b1fc0578b315af83</citedby><cites>FETCH-LOGICAL-c564t-3b86e791cca23f3f9b229801e914693bf62e9ada9376b1fd5b1fc0578b315af83</cites><orcidid>0000-0002-6972-2963 ; 0000-0002-8824-8435 ; 0000-0002-5147-0331 ; 0000-0002-7495-2552 ; 0000-0001-5387-3284 ; 0000-0002-0486-0310 ; 0000-0001-6742-9504 ; 0000-0001-6546-4306 ; 0000-0002-6787-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070254/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070254/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38705190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, D B</creatorcontrib><creatorcontrib>Alison, J</creatorcontrib><creatorcontrib>August, T A</creatorcontrib><creatorcontrib>Bélisle, M</creatorcontrib><creatorcontrib>Bjerge, K</creatorcontrib><creatorcontrib>Bowden, J J</creatorcontrib><creatorcontrib>Bunsen, M J</creatorcontrib><creatorcontrib>Cunha, F</creatorcontrib><creatorcontrib>Geissmann, Q</creatorcontrib><creatorcontrib>Goldmann, K</creatorcontrib><creatorcontrib>Gomez-Segura, A</creatorcontrib><creatorcontrib>Jain, A</creatorcontrib><creatorcontrib>Huijbers, C</creatorcontrib><creatorcontrib>Larrivée, M</creatorcontrib><creatorcontrib>Lawson, J L</creatorcontrib><creatorcontrib>Mann, H M</creatorcontrib><creatorcontrib>Mazerolle, M J</creatorcontrib><creatorcontrib>McFarland, K P</creatorcontrib><creatorcontrib>Pasi, L</creatorcontrib><creatorcontrib>Peters, S</creatorcontrib><creatorcontrib>Pinoy, N</creatorcontrib><creatorcontrib>Rolnick, D</creatorcontrib><creatorcontrib>Skinner, G L</creatorcontrib><creatorcontrib>Strickson, O T</creatorcontrib><creatorcontrib>Svenning, A</creatorcontrib><creatorcontrib>Teagle, S</creatorcontrib><creatorcontrib>Høye, T T</creatorcontrib><title>Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Automated sensors have potential to standardize and expand the monitoring of insects across the globe. As one of the most scalable and fastest developing sensor technologies, we describe a framework for automated, image-based monitoring of nocturnal insects-from sensor development and field deployment to workflows for data processing and publishing. Sensors comprise a light to attract insects, a camera for collecting images and a computer for scheduling, data storage and processing. Metadata is important to describe sampling schedules that balance the capture of relevant ecological information against power and data storage limitations. Large data volumes of images from automated systems necessitate scalable and effective data processing. We describe computer vision approaches for the detection, tracking and classification of insects, including models built from existing aggregations of labelled insect images. Data from automated camera systems necessitate approaches that account for inherent biases. We advocate models that explicitly correct for bias in species occurrence or abundance estimates resulting from the imperfect detection of species or individuals present during sampling occasions. We propose ten priorities towards a step-change in automated monitoring of nocturnal insects, a vital task in the face of rapid biodiversity loss from global threats. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.</description><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Biodiversity</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Insecta - physiology</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PHDEMhiNExS60V44oRw6dxUnmK6dqtWoL0kpc4IiiTCZZ0s4kS5wFwa_vrPhQudiW_Pq15YeQUwYLBrK9SJi7BQcuFsCgPSBzVjas4LKBQzIHWfOiLUU9I8eIfwBAVk15RGaibaBiEubk7iY-6dQj1RSzDv1U-xfbU5f0aJ9i-ktdTHR5VWhEj9n236kf9cYWncZJNsbgc0w-bGh0NESTdynogfqA1mT8Sr44PaD99pZPyO2vnzery2J9_ftqtVwXpqrLXIiurW0jmTGaCyec7DiXLTArWVlL0bmaW6l7LUVTd8z11RQMVE3bCVZp14oT8uPVd7vrRtsbG3LSg9qm6db0rKL26nMn-Hu1iY-KMWiAV-XkcP7mkOLDzmJWo0djh0EHG3eoxPSvkotawCRdvEpNiojJuo89DNQeitpDUXsoag9lGjj7_7oP-TsF8Q9bJ4q2</recordid><startdate>20240624</startdate><enddate>20240624</enddate><creator>Roy, D B</creator><creator>Alison, J</creator><creator>August, T A</creator><creator>Bélisle, M</creator><creator>Bjerge, K</creator><creator>Bowden, J J</creator><creator>Bunsen, M J</creator><creator>Cunha, F</creator><creator>Geissmann, Q</creator><creator>Goldmann, K</creator><creator>Gomez-Segura, A</creator><creator>Jain, A</creator><creator>Huijbers, C</creator><creator>Larrivée, M</creator><creator>Lawson, J L</creator><creator>Mann, H M</creator><creator>Mazerolle, M J</creator><creator>McFarland, K P</creator><creator>Pasi, L</creator><creator>Peters, S</creator><creator>Pinoy, N</creator><creator>Rolnick, D</creator><creator>Skinner, G L</creator><creator>Strickson, O T</creator><creator>Svenning, A</creator><creator>Teagle, S</creator><creator>Høye, T T</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6972-2963</orcidid><orcidid>https://orcid.org/0000-0002-8824-8435</orcidid><orcidid>https://orcid.org/0000-0002-5147-0331</orcidid><orcidid>https://orcid.org/0000-0002-7495-2552</orcidid><orcidid>https://orcid.org/0000-0001-5387-3284</orcidid><orcidid>https://orcid.org/0000-0002-0486-0310</orcidid><orcidid>https://orcid.org/0000-0001-6742-9504</orcidid><orcidid>https://orcid.org/0000-0001-6546-4306</orcidid><orcidid>https://orcid.org/0000-0002-6787-6192</orcidid></search><sort><creationdate>20240624</creationdate><title>Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects</title><author>Roy, D B ; Alison, J ; August, T A ; Bélisle, M ; Bjerge, K ; Bowden, J J ; Bunsen, M J ; Cunha, F ; Geissmann, Q ; Goldmann, K ; Gomez-Segura, A ; Jain, A ; Huijbers, C ; Larrivée, M ; Lawson, J L ; Mann, H M ; Mazerolle, M J ; McFarland, K P ; Pasi, L ; Peters, S ; Pinoy, N ; Rolnick, D ; Skinner, G L ; Strickson, O T ; Svenning, A ; Teagle, S ; Høye, T T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-3b86e791cca23f3f9b229801e914693bf62e9ada9376b1fd5b1fc0578b315af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Biodiversity</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Insecta - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, D B</creatorcontrib><creatorcontrib>Alison, J</creatorcontrib><creatorcontrib>August, T A</creatorcontrib><creatorcontrib>Bélisle, M</creatorcontrib><creatorcontrib>Bjerge, K</creatorcontrib><creatorcontrib>Bowden, J J</creatorcontrib><creatorcontrib>Bunsen, M J</creatorcontrib><creatorcontrib>Cunha, F</creatorcontrib><creatorcontrib>Geissmann, Q</creatorcontrib><creatorcontrib>Goldmann, K</creatorcontrib><creatorcontrib>Gomez-Segura, A</creatorcontrib><creatorcontrib>Jain, A</creatorcontrib><creatorcontrib>Huijbers, C</creatorcontrib><creatorcontrib>Larrivée, M</creatorcontrib><creatorcontrib>Lawson, J L</creatorcontrib><creatorcontrib>Mann, H M</creatorcontrib><creatorcontrib>Mazerolle, M J</creatorcontrib><creatorcontrib>McFarland, K P</creatorcontrib><creatorcontrib>Pasi, L</creatorcontrib><creatorcontrib>Peters, S</creatorcontrib><creatorcontrib>Pinoy, N</creatorcontrib><creatorcontrib>Rolnick, D</creatorcontrib><creatorcontrib>Skinner, G L</creatorcontrib><creatorcontrib>Strickson, O T</creatorcontrib><creatorcontrib>Svenning, A</creatorcontrib><creatorcontrib>Teagle, S</creatorcontrib><creatorcontrib>Høye, T T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, D B</au><au>Alison, J</au><au>August, T A</au><au>Bélisle, M</au><au>Bjerge, K</au><au>Bowden, J J</au><au>Bunsen, M J</au><au>Cunha, F</au><au>Geissmann, Q</au><au>Goldmann, K</au><au>Gomez-Segura, A</au><au>Jain, A</au><au>Huijbers, C</au><au>Larrivée, M</au><au>Lawson, J L</au><au>Mann, H M</au><au>Mazerolle, M J</au><au>McFarland, K P</au><au>Pasi, L</au><au>Peters, S</au><au>Pinoy, N</au><au>Rolnick, D</au><au>Skinner, G L</au><au>Strickson, O T</au><au>Svenning, A</au><au>Teagle, S</au><au>Høye, T T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2024-06-24</date><risdate>2024</risdate><volume>379</volume><issue>1904</issue><spage>20230108</spage><epage>20230108</epage><pages>20230108-20230108</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Automated sensors have potential to standardize and expand the monitoring of insects across the globe. As one of the most scalable and fastest developing sensor technologies, we describe a framework for automated, image-based monitoring of nocturnal insects-from sensor development and field deployment to workflows for data processing and publishing. Sensors comprise a light to attract insects, a camera for collecting images and a computer for scheduling, data storage and processing. Metadata is important to describe sampling schedules that balance the capture of relevant ecological information against power and data storage limitations. Large data volumes of images from automated systems necessitate scalable and effective data processing. We describe computer vision approaches for the detection, tracking and classification of insects, including models built from existing aggregations of labelled insect images. Data from automated camera systems necessitate approaches that account for inherent biases. We advocate models that explicitly correct for bias in species occurrence or abundance estimates resulting from the imperfect detection of species or individuals present during sampling occasions. We propose ten priorities towards a step-change in automated monitoring of nocturnal insects, a vital task in the face of rapid biodiversity loss from global threats. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>38705190</pmid><doi>10.1098/rstb.2023.0108</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6972-2963</orcidid><orcidid>https://orcid.org/0000-0002-8824-8435</orcidid><orcidid>https://orcid.org/0000-0002-5147-0331</orcidid><orcidid>https://orcid.org/0000-0002-7495-2552</orcidid><orcidid>https://orcid.org/0000-0001-5387-3284</orcidid><orcidid>https://orcid.org/0000-0002-0486-0310</orcidid><orcidid>https://orcid.org/0000-0001-6742-9504</orcidid><orcidid>https://orcid.org/0000-0001-6546-4306</orcidid><orcidid>https://orcid.org/0000-0002-6787-6192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2024-06, Vol.379 (1904), p.20230108-20230108
issn 0962-8436
1471-2970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11070254
source MEDLINE; PubMed Central
subjects Animals
Artificial Intelligence
Biodiversity
Image Processing, Computer-Assisted - methods
Insecta - physiology
title Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20standardized%20framework%20for%20AI-assisted,%20image-based%20monitoring%20of%20nocturnal%20insects&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Roy,%20D%20B&rft.date=2024-06-24&rft.volume=379&rft.issue=1904&rft.spage=20230108&rft.epage=20230108&rft.pages=20230108-20230108&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2023.0108&rft_dat=%3Cproquest_pubme%3E3051423630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051423630&rft_id=info:pmid/38705190&rfr_iscdi=true