Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis

eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2021-01, Vol.78 (1), p.249-270
Hauptverfasser: Xie, Jianling, Shen, Kaikai, Jones, Ashley T., Yang, Jian, Tee, Andrew R., Shen, Ming Hong, Yu, Mengyuan, Irani, Swati, Wong, Derick, Merrett, James E., Lenchine, Roman V., De Poi, Stuart, Jensen, Kirk B., Trim, Paul J., Snel, Marten F., Kamei, Makoto, Martin, Sally Kim, Fitter, Stephen, Tian, Shuye, Wang, Xuemin, Butler, Lisa M., Zannettino, Andrew C. W., Proud, Christopher G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 1
container_start_page 249
container_title Cellular and molecular life sciences : CMLS
container_volume 78
creator Xie, Jianling
Shen, Kaikai
Jones, Ashley T.
Yang, Jian
Tee, Andrew R.
Shen, Ming Hong
Yu, Mengyuan
Irani, Swati
Wong, Derick
Merrett, James E.
Lenchine, Roman V.
De Poi, Stuart
Jensen, Kirk B.
Trim, Paul J.
Snel, Marten F.
Kamei, Makoto
Martin, Sally Kim
Fitter, Stephen
Tian, Shuye
Wang, Xuemin
Butler, Lisa M.
Zannettino, Andrew C. W.
Proud, Christopher G.
description eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.
doi_str_mv 10.1007/s00018-020-03491-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11068017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486883643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-50c3aa6424c84161bdcecf920dba8d4cdb6c77151f9ba985b0139cb9c435b00b3</originalsourceid><addsrcrecordid>eNp9UUtv1DAQthAVfcAf4IAicU6ZsZ3EOSG0KlB124pqkbhZtuNkU2XtrZ1lxb-v22y39NLTzOh7zGg-Qj4inCJA9SUCAIocKOTAeI05viFHyNNYQ4Vvd30p6J9DchzjbWIXgpbvyCGjWAFj9RH5dWNNvw7eqCGLfefU0Lsu03bcWuuy1eL6ZoaZck12eXVBM-PdGPwQM2OHIeuC347LR9Q74zvrbOzje3LQqiHaD7t6Qn5_P1vMfubz6x_ns2_z3PCqGPMCDFOq5JQbwbFE3Rhr2ppCo5VouGl0aaoKC2xrrWpRaEBWG10bzlIPmp2Qr5PveqNXNqnTaWqQ69CvVPgnverlS8T1S9n5vxIRSgFYJYfPO4fg7zY2jvLWb0J6QZSUi1IIVnKWWHRimeBjDLbdr0CQDznIKQeZcpCPOUhMok__H7eXPD0-EdhEiAlynQ3Pu1-xvQcTtZPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486883643</pqid></control><display><type>article</type><title>Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xie, Jianling ; Shen, Kaikai ; Jones, Ashley T. ; Yang, Jian ; Tee, Andrew R. ; Shen, Ming Hong ; Yu, Mengyuan ; Irani, Swati ; Wong, Derick ; Merrett, James E. ; Lenchine, Roman V. ; De Poi, Stuart ; Jensen, Kirk B. ; Trim, Paul J. ; Snel, Marten F. ; Kamei, Makoto ; Martin, Sally Kim ; Fitter, Stephen ; Tian, Shuye ; Wang, Xuemin ; Butler, Lisa M. ; Zannettino, Andrew C. W. ; Proud, Christopher G.</creator><creatorcontrib>Xie, Jianling ; Shen, Kaikai ; Jones, Ashley T. ; Yang, Jian ; Tee, Andrew R. ; Shen, Ming Hong ; Yu, Mengyuan ; Irani, Swati ; Wong, Derick ; Merrett, James E. ; Lenchine, Roman V. ; De Poi, Stuart ; Jensen, Kirk B. ; Trim, Paul J. ; Snel, Marten F. ; Kamei, Makoto ; Martin, Sally Kim ; Fitter, Stephen ; Tian, Shuye ; Wang, Xuemin ; Butler, Lisa M. ; Zannettino, Andrew C. W. ; Proud, Christopher G.</creatorcontrib><description>eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-020-03491-1</identifier><identifier>PMID: 32170339</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Binding ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Cycle Checkpoints - drug effects ; Cell Line ; Cell Proliferation - drug effects ; Cell size ; Control theory ; Eukaryotic Initiation Factor-4E - antagonists &amp; inhibitors ; Eukaryotic Initiation Factor-4E - metabolism ; Feedback loops ; Humans ; Initiation factor eIF-4E ; Initiation factor eIF-4G ; Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Invasiveness ; Kinases ; Life Sciences ; Male ; Mechanistic Target of Rapamycin Complex 1 - antagonists &amp; inhibitors ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Morpholines - pharmacology ; mRNA ; Mutagenesis, Site-Directed ; Original ; Original Article ; Phosphorylation ; Phosphorylation - drug effects ; Prostate ; Prostate cancer ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Protein Binding ; Protein biosynthesis ; Protein Kinase Inhibitors - pharmacology ; Protein Serine-Threonine Kinases - antagonists &amp; inhibitors ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Protein synthesis ; Signal Transduction - drug effects ; Signaling ; Tuberous Sclerosis Complex 2 Protein - genetics ; Tuberous Sclerosis Complex 2 Protein - metabolism ; Tumorigenesis</subject><ispartof>Cellular and molecular life sciences : CMLS, 2021-01, Vol.78 (1), p.249-270</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-50c3aa6424c84161bdcecf920dba8d4cdb6c77151f9ba985b0139cb9c435b00b3</citedby><cites>FETCH-LOGICAL-c475t-50c3aa6424c84161bdcecf920dba8d4cdb6c77151f9ba985b0139cb9c435b00b3</cites><orcidid>0000-0003-2698-3220 ; 0000-0002-2084-1734 ; 0000-0002-8502-7274 ; 0000-0002-3891-7231 ; 0000-0002-6646-6167 ; 0000-0002-5700-3478 ; 0000-0003-1663-6807 ; 0000-0002-5577-4631 ; 0000-0002-8947-1030 ; 0000-0002-3734-4670 ; 0000-0001-7949-5533 ; 0000-0001-8734-3433 ; 0000-0002-0588-8016 ; 0000-0002-1438-0783 ; 0000-0002-4644-7022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068017/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068017/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32170339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Jianling</creatorcontrib><creatorcontrib>Shen, Kaikai</creatorcontrib><creatorcontrib>Jones, Ashley T.</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Tee, Andrew R.</creatorcontrib><creatorcontrib>Shen, Ming Hong</creatorcontrib><creatorcontrib>Yu, Mengyuan</creatorcontrib><creatorcontrib>Irani, Swati</creatorcontrib><creatorcontrib>Wong, Derick</creatorcontrib><creatorcontrib>Merrett, James E.</creatorcontrib><creatorcontrib>Lenchine, Roman V.</creatorcontrib><creatorcontrib>De Poi, Stuart</creatorcontrib><creatorcontrib>Jensen, Kirk B.</creatorcontrib><creatorcontrib>Trim, Paul J.</creatorcontrib><creatorcontrib>Snel, Marten F.</creatorcontrib><creatorcontrib>Kamei, Makoto</creatorcontrib><creatorcontrib>Martin, Sally Kim</creatorcontrib><creatorcontrib>Fitter, Stephen</creatorcontrib><creatorcontrib>Tian, Shuye</creatorcontrib><creatorcontrib>Wang, Xuemin</creatorcontrib><creatorcontrib>Butler, Lisa M.</creatorcontrib><creatorcontrib>Zannettino, Andrew C. W.</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><title>Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.</description><subject>Animals</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell size</subject><subject>Control theory</subject><subject>Eukaryotic Initiation Factor-4E - antagonists &amp; inhibitors</subject><subject>Eukaryotic Initiation Factor-4E - metabolism</subject><subject>Feedback loops</subject><subject>Humans</subject><subject>Initiation factor eIF-4E</subject><subject>Initiation factor eIF-4G</subject><subject>Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Invasiveness</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mechanistic Target of Rapamycin Complex 1 - antagonists &amp; inhibitors</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Transgenic</subject><subject>Morpholines - pharmacology</subject><subject>mRNA</subject><subject>Mutagenesis, Site-Directed</subject><subject>Original</subject><subject>Original Article</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Prostate</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Protein Binding</subject><subject>Protein biosynthesis</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Protein synthesis</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Tuberous Sclerosis Complex 2 Protein - genetics</subject><subject>Tuberous Sclerosis Complex 2 Protein - metabolism</subject><subject>Tumorigenesis</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UUtv1DAQthAVfcAf4IAicU6ZsZ3EOSG0KlB124pqkbhZtuNkU2XtrZ1lxb-v22y39NLTzOh7zGg-Qj4inCJA9SUCAIocKOTAeI05viFHyNNYQ4Vvd30p6J9DchzjbWIXgpbvyCGjWAFj9RH5dWNNvw7eqCGLfefU0Lsu03bcWuuy1eL6ZoaZck12eXVBM-PdGPwQM2OHIeuC347LR9Q74zvrbOzje3LQqiHaD7t6Qn5_P1vMfubz6x_ns2_z3PCqGPMCDFOq5JQbwbFE3Rhr2ppCo5VouGl0aaoKC2xrrWpRaEBWG10bzlIPmp2Qr5PveqNXNqnTaWqQ69CvVPgnverlS8T1S9n5vxIRSgFYJYfPO4fg7zY2jvLWb0J6QZSUi1IIVnKWWHRimeBjDLbdr0CQDznIKQeZcpCPOUhMok__H7eXPD0-EdhEiAlynQ3Pu1-xvQcTtZPc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xie, Jianling</creator><creator>Shen, Kaikai</creator><creator>Jones, Ashley T.</creator><creator>Yang, Jian</creator><creator>Tee, Andrew R.</creator><creator>Shen, Ming Hong</creator><creator>Yu, Mengyuan</creator><creator>Irani, Swati</creator><creator>Wong, Derick</creator><creator>Merrett, James E.</creator><creator>Lenchine, Roman V.</creator><creator>De Poi, Stuart</creator><creator>Jensen, Kirk B.</creator><creator>Trim, Paul J.</creator><creator>Snel, Marten F.</creator><creator>Kamei, Makoto</creator><creator>Martin, Sally Kim</creator><creator>Fitter, Stephen</creator><creator>Tian, Shuye</creator><creator>Wang, Xuemin</creator><creator>Butler, Lisa M.</creator><creator>Zannettino, Andrew C. W.</creator><creator>Proud, Christopher G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2698-3220</orcidid><orcidid>https://orcid.org/0000-0002-2084-1734</orcidid><orcidid>https://orcid.org/0000-0002-8502-7274</orcidid><orcidid>https://orcid.org/0000-0002-3891-7231</orcidid><orcidid>https://orcid.org/0000-0002-6646-6167</orcidid><orcidid>https://orcid.org/0000-0002-5700-3478</orcidid><orcidid>https://orcid.org/0000-0003-1663-6807</orcidid><orcidid>https://orcid.org/0000-0002-5577-4631</orcidid><orcidid>https://orcid.org/0000-0002-8947-1030</orcidid><orcidid>https://orcid.org/0000-0002-3734-4670</orcidid><orcidid>https://orcid.org/0000-0001-7949-5533</orcidid><orcidid>https://orcid.org/0000-0001-8734-3433</orcidid><orcidid>https://orcid.org/0000-0002-0588-8016</orcidid><orcidid>https://orcid.org/0000-0002-1438-0783</orcidid><orcidid>https://orcid.org/0000-0002-4644-7022</orcidid></search><sort><creationdate>20210101</creationdate><title>Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis</title><author>Xie, Jianling ; Shen, Kaikai ; Jones, Ashley T. ; Yang, Jian ; Tee, Andrew R. ; Shen, Ming Hong ; Yu, Mengyuan ; Irani, Swati ; Wong, Derick ; Merrett, James E. ; Lenchine, Roman V. ; De Poi, Stuart ; Jensen, Kirk B. ; Trim, Paul J. ; Snel, Marten F. ; Kamei, Makoto ; Martin, Sally Kim ; Fitter, Stephen ; Tian, Shuye ; Wang, Xuemin ; Butler, Lisa M. ; Zannettino, Andrew C. W. ; Proud, Christopher G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-50c3aa6424c84161bdcecf920dba8d4cdb6c77151f9ba985b0139cb9c435b00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell size</topic><topic>Control theory</topic><topic>Eukaryotic Initiation Factor-4E - antagonists &amp; inhibitors</topic><topic>Eukaryotic Initiation Factor-4E - metabolism</topic><topic>Feedback loops</topic><topic>Humans</topic><topic>Initiation factor eIF-4E</topic><topic>Initiation factor eIF-4G</topic><topic>Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Invasiveness</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mechanistic Target of Rapamycin Complex 1 - antagonists &amp; inhibitors</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Transgenic</topic><topic>Morpholines - pharmacology</topic><topic>mRNA</topic><topic>Mutagenesis, Site-Directed</topic><topic>Original</topic><topic>Original Article</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Prostate</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Protein Binding</topic><topic>Protein biosynthesis</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Protein synthesis</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Tuberous Sclerosis Complex 2 Protein - genetics</topic><topic>Tuberous Sclerosis Complex 2 Protein - metabolism</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jianling</creatorcontrib><creatorcontrib>Shen, Kaikai</creatorcontrib><creatorcontrib>Jones, Ashley T.</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Tee, Andrew R.</creatorcontrib><creatorcontrib>Shen, Ming Hong</creatorcontrib><creatorcontrib>Yu, Mengyuan</creatorcontrib><creatorcontrib>Irani, Swati</creatorcontrib><creatorcontrib>Wong, Derick</creatorcontrib><creatorcontrib>Merrett, James E.</creatorcontrib><creatorcontrib>Lenchine, Roman V.</creatorcontrib><creatorcontrib>De Poi, Stuart</creatorcontrib><creatorcontrib>Jensen, Kirk B.</creatorcontrib><creatorcontrib>Trim, Paul J.</creatorcontrib><creatorcontrib>Snel, Marten F.</creatorcontrib><creatorcontrib>Kamei, Makoto</creatorcontrib><creatorcontrib>Martin, Sally Kim</creatorcontrib><creatorcontrib>Fitter, Stephen</creatorcontrib><creatorcontrib>Tian, Shuye</creatorcontrib><creatorcontrib>Wang, Xuemin</creatorcontrib><creatorcontrib>Butler, Lisa M.</creatorcontrib><creatorcontrib>Zannettino, Andrew C. W.</creatorcontrib><creatorcontrib>Proud, Christopher G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Jianling</au><au>Shen, Kaikai</au><au>Jones, Ashley T.</au><au>Yang, Jian</au><au>Tee, Andrew R.</au><au>Shen, Ming Hong</au><au>Yu, Mengyuan</au><au>Irani, Swati</au><au>Wong, Derick</au><au>Merrett, James E.</au><au>Lenchine, Roman V.</au><au>De Poi, Stuart</au><au>Jensen, Kirk B.</au><au>Trim, Paul J.</au><au>Snel, Marten F.</au><au>Kamei, Makoto</au><au>Martin, Sally Kim</au><au>Fitter, Stephen</au><au>Tian, Shuye</au><au>Wang, Xuemin</au><au>Butler, Lisa M.</au><au>Zannettino, Andrew C. W.</au><au>Proud, Christopher G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>78</volume><issue>1</issue><spage>249</spage><epage>270</epage><pages>249-270</pages><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32170339</pmid><doi>10.1007/s00018-020-03491-1</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2698-3220</orcidid><orcidid>https://orcid.org/0000-0002-2084-1734</orcidid><orcidid>https://orcid.org/0000-0002-8502-7274</orcidid><orcidid>https://orcid.org/0000-0002-3891-7231</orcidid><orcidid>https://orcid.org/0000-0002-6646-6167</orcidid><orcidid>https://orcid.org/0000-0002-5700-3478</orcidid><orcidid>https://orcid.org/0000-0003-1663-6807</orcidid><orcidid>https://orcid.org/0000-0002-5577-4631</orcidid><orcidid>https://orcid.org/0000-0002-8947-1030</orcidid><orcidid>https://orcid.org/0000-0002-3734-4670</orcidid><orcidid>https://orcid.org/0000-0001-7949-5533</orcidid><orcidid>https://orcid.org/0000-0001-8734-3433</orcidid><orcidid>https://orcid.org/0000-0002-0588-8016</orcidid><orcidid>https://orcid.org/0000-0002-1438-0783</orcidid><orcidid>https://orcid.org/0000-0002-4644-7022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2021-01, Vol.78 (1), p.249-270
issn 1420-682X
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11068017
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Animals
Binding
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell Cycle Checkpoints - drug effects
Cell Line
Cell Proliferation - drug effects
Cell size
Control theory
Eukaryotic Initiation Factor-4E - antagonists & inhibitors
Eukaryotic Initiation Factor-4E - metabolism
Feedback loops
Humans
Initiation factor eIF-4E
Initiation factor eIF-4G
Intracellular Signaling Peptides and Proteins - antagonists & inhibitors
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Invasiveness
Kinases
Life Sciences
Male
Mechanistic Target of Rapamycin Complex 1 - antagonists & inhibitors
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
Mice, Inbred BALB C
Mice, Transgenic
Morpholines - pharmacology
mRNA
Mutagenesis, Site-Directed
Original
Original Article
Phosphorylation
Phosphorylation - drug effects
Prostate
Prostate cancer
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
Protein Binding
Protein biosynthesis
Protein Kinase Inhibitors - pharmacology
Protein Serine-Threonine Kinases - antagonists & inhibitors
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Protein synthesis
Signal Transduction - drug effects
Signaling
Tuberous Sclerosis Complex 2 Protein - genetics
Tuberous Sclerosis Complex 2 Protein - metabolism
Tumorigenesis
title Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocal%20signaling%20between%20mTORC1%20and%20MNK2%20controls%20cell%20growth%20and%20oncogenesis&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Xie,%20Jianling&rft.date=2021-01-01&rft.volume=78&rft.issue=1&rft.spage=249&rft.epage=270&rft.pages=249-270&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-020-03491-1&rft_dat=%3Cproquest_pubme%3E2486883643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486883643&rft_id=info:pmid/32170339&rfr_iscdi=true