Observation of negative surface and interface energies of quantum dots
Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-04, Vol.121 (18), p.e2307633121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | e2307633121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Calvin, Jason J Brewer, Amanda S Crook, Michelle F Kaufman, Tierni M Alivisatos, A Paul |
description | Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics. |
doi_str_mv | 10.1073/pnas.2307633121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11067453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051072824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-41611ba2fa06837d42e96aa574160374f25d36d9925e3f94812c6f0d84d1395b3</originalsourceid><addsrcrecordid>eNpdkcFvFCEUh4nR2LX17M1M9NLLtMADBk7GNFabNOnFngnLvNnS7MIWmE3638tm26o9AXkfv_fgI-QTo2eMDnC-ja6ccaCDAmCcvSELRg3rlTD0LVlQyodeCy6OyIdS7imlRmr6nhyBVkKLgS3I5c2yYN65GlLs0tRFXLX9Drsy58l57FwcuxArHk4YMa8Clj36MLtY5003plpOyLvJrQt-fFqPye3lj98Xv_rrm59XF9-vey8o1F4wxdjS8clRpWEYBUejnJNDK1AYxMTlCGo0hkuEyQjNuFcTHbUYGRi5hGPy7ZC7nZcbHD3Gmt3abnPYuPxokwv2_0oMd3aVdpYxqgYhoSV8OSSkUoMtPlT0dz7FiL5aDtB68wadPrXJ6WHGUu0mFI_rtYuY5mKBCsmYBKMb-vUVep_mHNsnNEo2SVxz0ajzA-VzKiXj9DIyo3Zv0u5N2r8m243P_770hX9WB38A68-Ynw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051072824</pqid></control><display><type>article</type><title>Observation of negative surface and interface energies of quantum dots</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Calvin, Jason J ; Brewer, Amanda S ; Crook, Michelle F ; Kaufman, Tierni M ; Alivisatos, A Paul</creator><creatorcontrib>Calvin, Jason J ; Brewer, Amanda S ; Crook, Michelle F ; Kaufman, Tierni M ; Alivisatos, A Paul ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2307633121</identifier><identifier>PMID: 38648471</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bonding strength ; calorimetry ; Chemical bonds ; Colloids ; Crystals ; Energy ; Indium phosphides ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interfacial energy ; Ligands ; Material properties ; Nanocrystals ; Nanomaterials ; Nanotechnology ; Physical Sciences ; Quantum dots ; Surface energy ; Surface properties ; Thermodynamics ; Zinc sulfide</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (18), p.e2307633121</ispartof><rights>Copyright National Academy of Sciences Apr 30, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c403t-41611ba2fa06837d42e96aa574160374f25d36d9925e3f94812c6f0d84d1395b3</cites><orcidid>0000-0001-8381-2466 ; 0000000183812466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067453/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067453/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38648471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2339922$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvin, Jason J</creatorcontrib><creatorcontrib>Brewer, Amanda S</creatorcontrib><creatorcontrib>Crook, Michelle F</creatorcontrib><creatorcontrib>Kaufman, Tierni M</creatorcontrib><creatorcontrib>Alivisatos, A Paul</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Observation of negative surface and interface energies of quantum dots</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.</description><subject>Bonding strength</subject><subject>calorimetry</subject><subject>Chemical bonds</subject><subject>Colloids</subject><subject>Crystals</subject><subject>Energy</subject><subject>Indium phosphides</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interfacial energy</subject><subject>Ligands</subject><subject>Material properties</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Physical Sciences</subject><subject>Quantum dots</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Thermodynamics</subject><subject>Zinc sulfide</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkcFvFCEUh4nR2LX17M1M9NLLtMADBk7GNFabNOnFngnLvNnS7MIWmE3638tm26o9AXkfv_fgI-QTo2eMDnC-ja6ccaCDAmCcvSELRg3rlTD0LVlQyodeCy6OyIdS7imlRmr6nhyBVkKLgS3I5c2yYN65GlLs0tRFXLX9Drsy58l57FwcuxArHk4YMa8Clj36MLtY5003plpOyLvJrQt-fFqPye3lj98Xv_rrm59XF9-vey8o1F4wxdjS8clRpWEYBUejnJNDK1AYxMTlCGo0hkuEyQjNuFcTHbUYGRi5hGPy7ZC7nZcbHD3Gmt3abnPYuPxokwv2_0oMd3aVdpYxqgYhoSV8OSSkUoMtPlT0dz7FiL5aDtB68wadPrXJ6WHGUu0mFI_rtYuY5mKBCsmYBKMb-vUVep_mHNsnNEo2SVxz0ajzA-VzKiXj9DIyo3Zv0u5N2r8m243P_770hX9WB38A68-Ynw</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Calvin, Jason J</creator><creator>Brewer, Amanda S</creator><creator>Crook, Michelle F</creator><creator>Kaufman, Tierni M</creator><creator>Alivisatos, A Paul</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8381-2466</orcidid><orcidid>https://orcid.org/0000000183812466</orcidid></search><sort><creationdate>20240430</creationdate><title>Observation of negative surface and interface energies of quantum dots</title><author>Calvin, Jason J ; Brewer, Amanda S ; Crook, Michelle F ; Kaufman, Tierni M ; Alivisatos, A Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-41611ba2fa06837d42e96aa574160374f25d36d9925e3f94812c6f0d84d1395b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>calorimetry</topic><topic>Chemical bonds</topic><topic>Colloids</topic><topic>Crystals</topic><topic>Energy</topic><topic>Indium phosphides</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interfacial energy</topic><topic>Ligands</topic><topic>Material properties</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Physical Sciences</topic><topic>Quantum dots</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Thermodynamics</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvin, Jason J</creatorcontrib><creatorcontrib>Brewer, Amanda S</creatorcontrib><creatorcontrib>Crook, Michelle F</creatorcontrib><creatorcontrib>Kaufman, Tierni M</creatorcontrib><creatorcontrib>Alivisatos, A Paul</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvin, Jason J</au><au>Brewer, Amanda S</au><au>Crook, Michelle F</au><au>Kaufman, Tierni M</au><au>Alivisatos, A Paul</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of negative surface and interface energies of quantum dots</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-04-30</date><risdate>2024</risdate><volume>121</volume><issue>18</issue><spage>e2307633121</spage><pages>e2307633121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38648471</pmid><doi>10.1073/pnas.2307633121</doi><orcidid>https://orcid.org/0000-0001-8381-2466</orcidid><orcidid>https://orcid.org/0000000183812466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (18), p.e2307633121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11067453 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bonding strength calorimetry Chemical bonds Colloids Crystals Energy Indium phosphides INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Interfacial energy Ligands Material properties Nanocrystals Nanomaterials Nanotechnology Physical Sciences Quantum dots Surface energy Surface properties Thermodynamics Zinc sulfide |
title | Observation of negative surface and interface energies of quantum dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20negative%20surface%20and%20interface%20energies%20of%20quantum%20dots&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Calvin,%20Jason%20J&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2024-04-30&rft.volume=121&rft.issue=18&rft.spage=e2307633121&rft.pages=e2307633121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2307633121&rft_dat=%3Cproquest_pubme%3E3051072824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051072824&rft_id=info:pmid/38648471&rfr_iscdi=true |