Observation of negative surface and interface energies of quantum dots

Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-04, Vol.121 (18), p.e2307633121
Hauptverfasser: Calvin, Jason J, Brewer, Amanda S, Crook, Michelle F, Kaufman, Tierni M, Alivisatos, A Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page e2307633121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Calvin, Jason J
Brewer, Amanda S
Crook, Michelle F
Kaufman, Tierni M
Alivisatos, A Paul
description Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.
doi_str_mv 10.1073/pnas.2307633121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11067453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051072824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-41611ba2fa06837d42e96aa574160374f25d36d9925e3f94812c6f0d84d1395b3</originalsourceid><addsrcrecordid>eNpdkcFvFCEUh4nR2LX17M1M9NLLtMADBk7GNFabNOnFngnLvNnS7MIWmE3638tm26o9AXkfv_fgI-QTo2eMDnC-ja6ccaCDAmCcvSELRg3rlTD0LVlQyodeCy6OyIdS7imlRmr6nhyBVkKLgS3I5c2yYN65GlLs0tRFXLX9Drsy58l57FwcuxArHk4YMa8Clj36MLtY5003plpOyLvJrQt-fFqPye3lj98Xv_rrm59XF9-vey8o1F4wxdjS8clRpWEYBUejnJNDK1AYxMTlCGo0hkuEyQjNuFcTHbUYGRi5hGPy7ZC7nZcbHD3Gmt3abnPYuPxokwv2_0oMd3aVdpYxqgYhoSV8OSSkUoMtPlT0dz7FiL5aDtB68wadPrXJ6WHGUu0mFI_rtYuY5mKBCsmYBKMb-vUVep_mHNsnNEo2SVxz0ajzA-VzKiXj9DIyo3Zv0u5N2r8m243P_770hX9WB38A68-Ynw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051072824</pqid></control><display><type>article</type><title>Observation of negative surface and interface energies of quantum dots</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Calvin, Jason J ; Brewer, Amanda S ; Crook, Michelle F ; Kaufman, Tierni M ; Alivisatos, A Paul</creator><creatorcontrib>Calvin, Jason J ; Brewer, Amanda S ; Crook, Michelle F ; Kaufman, Tierni M ; Alivisatos, A Paul ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2307633121</identifier><identifier>PMID: 38648471</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bonding strength ; calorimetry ; Chemical bonds ; Colloids ; Crystals ; Energy ; Indium phosphides ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interfacial energy ; Ligands ; Material properties ; Nanocrystals ; Nanomaterials ; Nanotechnology ; Physical Sciences ; Quantum dots ; Surface energy ; Surface properties ; Thermodynamics ; Zinc sulfide</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (18), p.e2307633121</ispartof><rights>Copyright National Academy of Sciences Apr 30, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c403t-41611ba2fa06837d42e96aa574160374f25d36d9925e3f94812c6f0d84d1395b3</cites><orcidid>0000-0001-8381-2466 ; 0000000183812466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067453/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067453/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38648471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2339922$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvin, Jason J</creatorcontrib><creatorcontrib>Brewer, Amanda S</creatorcontrib><creatorcontrib>Crook, Michelle F</creatorcontrib><creatorcontrib>Kaufman, Tierni M</creatorcontrib><creatorcontrib>Alivisatos, A Paul</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Observation of negative surface and interface energies of quantum dots</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.</description><subject>Bonding strength</subject><subject>calorimetry</subject><subject>Chemical bonds</subject><subject>Colloids</subject><subject>Crystals</subject><subject>Energy</subject><subject>Indium phosphides</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interfacial energy</subject><subject>Ligands</subject><subject>Material properties</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Physical Sciences</subject><subject>Quantum dots</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Thermodynamics</subject><subject>Zinc sulfide</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkcFvFCEUh4nR2LX17M1M9NLLtMADBk7GNFabNOnFngnLvNnS7MIWmE3638tm26o9AXkfv_fgI-QTo2eMDnC-ja6ccaCDAmCcvSELRg3rlTD0LVlQyodeCy6OyIdS7imlRmr6nhyBVkKLgS3I5c2yYN65GlLs0tRFXLX9Drsy58l57FwcuxArHk4YMa8Clj36MLtY5003plpOyLvJrQt-fFqPye3lj98Xv_rrm59XF9-vey8o1F4wxdjS8clRpWEYBUejnJNDK1AYxMTlCGo0hkuEyQjNuFcTHbUYGRi5hGPy7ZC7nZcbHD3Gmt3abnPYuPxokwv2_0oMd3aVdpYxqgYhoSV8OSSkUoMtPlT0dz7FiL5aDtB68wadPrXJ6WHGUu0mFI_rtYuY5mKBCsmYBKMb-vUVep_mHNsnNEo2SVxz0ajzA-VzKiXj9DIyo3Zv0u5N2r8m243P_770hX9WB38A68-Ynw</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Calvin, Jason J</creator><creator>Brewer, Amanda S</creator><creator>Crook, Michelle F</creator><creator>Kaufman, Tierni M</creator><creator>Alivisatos, A Paul</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8381-2466</orcidid><orcidid>https://orcid.org/0000000183812466</orcidid></search><sort><creationdate>20240430</creationdate><title>Observation of negative surface and interface energies of quantum dots</title><author>Calvin, Jason J ; Brewer, Amanda S ; Crook, Michelle F ; Kaufman, Tierni M ; Alivisatos, A Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-41611ba2fa06837d42e96aa574160374f25d36d9925e3f94812c6f0d84d1395b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>calorimetry</topic><topic>Chemical bonds</topic><topic>Colloids</topic><topic>Crystals</topic><topic>Energy</topic><topic>Indium phosphides</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interfacial energy</topic><topic>Ligands</topic><topic>Material properties</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Physical Sciences</topic><topic>Quantum dots</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Thermodynamics</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvin, Jason J</creatorcontrib><creatorcontrib>Brewer, Amanda S</creatorcontrib><creatorcontrib>Crook, Michelle F</creatorcontrib><creatorcontrib>Kaufman, Tierni M</creatorcontrib><creatorcontrib>Alivisatos, A Paul</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvin, Jason J</au><au>Brewer, Amanda S</au><au>Crook, Michelle F</au><au>Kaufman, Tierni M</au><au>Alivisatos, A Paul</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of negative surface and interface energies of quantum dots</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-04-30</date><risdate>2024</risdate><volume>121</volume><issue>18</issue><spage>e2307633121</spage><pages>e2307633121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38648471</pmid><doi>10.1073/pnas.2307633121</doi><orcidid>https://orcid.org/0000-0001-8381-2466</orcidid><orcidid>https://orcid.org/0000000183812466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (18), p.e2307633121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11067453
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bonding strength
calorimetry
Chemical bonds
Colloids
Crystals
Energy
Indium phosphides
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Interfacial energy
Ligands
Material properties
Nanocrystals
Nanomaterials
Nanotechnology
Physical Sciences
Quantum dots
Surface energy
Surface properties
Thermodynamics
Zinc sulfide
title Observation of negative surface and interface energies of quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20negative%20surface%20and%20interface%20energies%20of%20quantum%20dots&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Calvin,%20Jason%20J&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2024-04-30&rft.volume=121&rft.issue=18&rft.spage=e2307633121&rft.pages=e2307633121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2307633121&rft_dat=%3Cproquest_pubme%3E3051072824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051072824&rft_id=info:pmid/38648471&rfr_iscdi=true