Experimental evidence for defect tolerance in Pb-halide perovskites

The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-04, Vol.121 (18), p.e2316867121
Hauptverfasser: Jasti, Naga Prathibha, Levine, Igal, Feldman, Yishay Isai, Hodes, Gary, Aharon, Sigalit, Cahen, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page e2316867121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Jasti, Naga Prathibha
Levine, Igal
Feldman, Yishay Isai
Hodes, Gary
Aharon, Sigalit
Cahen, David
description The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb-HaPs by comparing the structural quality of 2-dimensional (2D), 2D-3D, and 3D Pb-iodide HaP crystals with their optoelectronic characteristics using high-sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface-) properties of HaPs. The results point to DT in 3D, 2D-3D, and 2D Pb-HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb-HaPs. These experiments and findings will help the search for and design of materials with real DT.
doi_str_mv 10.1073/pnas.2316867121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11067022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046511146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-90560962f85d8acc917ce755de46be9fe196314bcf3760c42757cd42e201a333</originalsourceid><addsrcrecordid>eNpdkc1P20AQxVcVVZPSnrkhS1x6cTKzn_YJoYiWSpHaQ-6rzXoMBscbdp0I_ns2CoW2p5FmfvP0Zh5jZwgzBCPm28GlGReoK22Q4wc2Raix1LKGEzYF4KasJJcT9jmlewCoVQWf2ERUWhlQOGWL66ctxW5Dw-j6gvZdQ4Onog2xaKglPxZj6Cm6Q7Mbit_r8s71GSryVtinh26k9IV9bF2f6OtrPWWr79erxU25_PXj5-JqWXph9FjWoDTUmreVairnfY3Gk1GqIanXVLeEtRYo177NOHjJjTK-kZw4oBNCnLLLo-x2t95Q47Pl6Hq7ze5dfLbBdfbfydDd2duwt4igDXCeFb69KsTwuKM02k2XPPW9GyjskhUgtUJEqTN68R96H3ZxyOdlSuXfY1XJTM2PlI8hpUjtmxsEewjIHgKy7wHljfO_j3jj_yQiXgCsXYwj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051071884</pqid></control><display><type>article</type><title>Experimental evidence for defect tolerance in Pb-halide perovskites</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jasti, Naga Prathibha ; Levine, Igal ; Feldman, Yishay Isai ; Hodes, Gary ; Aharon, Sigalit ; Cahen, David</creator><creatorcontrib>Jasti, Naga Prathibha ; Levine, Igal ; Feldman, Yishay Isai ; Hodes, Gary ; Aharon, Sigalit ; Cahen, David</creatorcontrib><description>The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb-HaPs by comparing the structural quality of 2-dimensional (2D), 2D-3D, and 3D Pb-iodide HaP crystals with their optoelectronic characteristics using high-sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface-) properties of HaPs. The results point to DT in 3D, 2D-3D, and 2D Pb-HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb-HaPs. These experiments and findings will help the search for and design of materials with real DT.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2316867121</identifier><identifier>PMID: 38657051</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Crystal defects ; Crystals ; Halides ; Iodides ; Lead ; Optoelectronic devices ; Perovskites ; Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (18), p.e2316867121</ispartof><rights>Copyright National Academy of Sciences Apr 30, 2024</rights><rights>Copyright © 2024 the Author(s). Published by PNAS. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-90560962f85d8acc917ce755de46be9fe196314bcf3760c42757cd42e201a333</cites><orcidid>0000-0003-3524-7241 ; 0000-0002-9178-0377 ; 0000-0001-8118-5446 ; 0000-0001-7798-195X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067022/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067022/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38657051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jasti, Naga Prathibha</creatorcontrib><creatorcontrib>Levine, Igal</creatorcontrib><creatorcontrib>Feldman, Yishay Isai</creatorcontrib><creatorcontrib>Hodes, Gary</creatorcontrib><creatorcontrib>Aharon, Sigalit</creatorcontrib><creatorcontrib>Cahen, David</creatorcontrib><title>Experimental evidence for defect tolerance in Pb-halide perovskites</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb-HaPs by comparing the structural quality of 2-dimensional (2D), 2D-3D, and 3D Pb-iodide HaP crystals with their optoelectronic characteristics using high-sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface-) properties of HaPs. The results point to DT in 3D, 2D-3D, and 2D Pb-HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb-HaPs. These experiments and findings will help the search for and design of materials with real DT.</description><subject>Crystal defects</subject><subject>Crystals</subject><subject>Halides</subject><subject>Iodides</subject><subject>Lead</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P20AQxVcVVZPSnrkhS1x6cTKzn_YJoYiWSpHaQ-6rzXoMBscbdp0I_ns2CoW2p5FmfvP0Zh5jZwgzBCPm28GlGReoK22Q4wc2Raix1LKGEzYF4KasJJcT9jmlewCoVQWf2ERUWhlQOGWL66ctxW5Dw-j6gvZdQ4Onog2xaKglPxZj6Cm6Q7Mbit_r8s71GSryVtinh26k9IV9bF2f6OtrPWWr79erxU25_PXj5-JqWXph9FjWoDTUmreVairnfY3Gk1GqIanXVLeEtRYo177NOHjJjTK-kZw4oBNCnLLLo-x2t95Q47Pl6Hq7ze5dfLbBdfbfydDd2duwt4igDXCeFb69KsTwuKM02k2XPPW9GyjskhUgtUJEqTN68R96H3ZxyOdlSuXfY1XJTM2PlI8hpUjtmxsEewjIHgKy7wHljfO_j3jj_yQiXgCsXYwj</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Jasti, Naga Prathibha</creator><creator>Levine, Igal</creator><creator>Feldman, Yishay Isai</creator><creator>Hodes, Gary</creator><creator>Aharon, Sigalit</creator><creator>Cahen, David</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3524-7241</orcidid><orcidid>https://orcid.org/0000-0002-9178-0377</orcidid><orcidid>https://orcid.org/0000-0001-8118-5446</orcidid><orcidid>https://orcid.org/0000-0001-7798-195X</orcidid></search><sort><creationdate>20240430</creationdate><title>Experimental evidence for defect tolerance in Pb-halide perovskites</title><author>Jasti, Naga Prathibha ; Levine, Igal ; Feldman, Yishay Isai ; Hodes, Gary ; Aharon, Sigalit ; Cahen, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-90560962f85d8acc917ce755de46be9fe196314bcf3760c42757cd42e201a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal defects</topic><topic>Crystals</topic><topic>Halides</topic><topic>Iodides</topic><topic>Lead</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasti, Naga Prathibha</creatorcontrib><creatorcontrib>Levine, Igal</creatorcontrib><creatorcontrib>Feldman, Yishay Isai</creatorcontrib><creatorcontrib>Hodes, Gary</creatorcontrib><creatorcontrib>Aharon, Sigalit</creatorcontrib><creatorcontrib>Cahen, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasti, Naga Prathibha</au><au>Levine, Igal</au><au>Feldman, Yishay Isai</au><au>Hodes, Gary</au><au>Aharon, Sigalit</au><au>Cahen, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evidence for defect tolerance in Pb-halide perovskites</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-04-30</date><risdate>2024</risdate><volume>121</volume><issue>18</issue><spage>e2316867121</spage><pages>e2316867121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb-HaPs by comparing the structural quality of 2-dimensional (2D), 2D-3D, and 3D Pb-iodide HaP crystals with their optoelectronic characteristics using high-sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface-) properties of HaPs. The results point to DT in 3D, 2D-3D, and 2D Pb-HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb-HaPs. These experiments and findings will help the search for and design of materials with real DT.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>38657051</pmid><doi>10.1073/pnas.2316867121</doi><orcidid>https://orcid.org/0000-0003-3524-7241</orcidid><orcidid>https://orcid.org/0000-0002-9178-0377</orcidid><orcidid>https://orcid.org/0000-0001-8118-5446</orcidid><orcidid>https://orcid.org/0000-0001-7798-195X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-04, Vol.121 (18), p.e2316867121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11067022
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Crystal defects
Crystals
Halides
Iodides
Lead
Optoelectronic devices
Perovskites
Physical Sciences
title Experimental evidence for defect tolerance in Pb-halide perovskites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evidence%20for%20defect%20tolerance%20in%20Pb-halide%20perovskites&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jasti,%20Naga%20Prathibha&rft.date=2024-04-30&rft.volume=121&rft.issue=18&rft.spage=e2316867121&rft.pages=e2316867121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2316867121&rft_dat=%3Cproquest_pubme%3E3046511146%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051071884&rft_id=info:pmid/38657051&rfr_iscdi=true