Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity
Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a peri...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2024-06, Vol.88 (6), p.76-76, Article 76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 6 |
container_start_page | 76 |
container_title | Journal of mathematical biology |
container_volume | 88 |
creator | Wu, Peng Salmaniw, Yurij Wang, Xiunan |
description | Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number
R
0
and show that the disease-free periodic solution is globally attractive when
R
0
<
1
whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when
R
0
>
1
. Moreover, we find that
R
0
is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows. |
doi_str_mv | 10.1007/s00285-024-02097-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11062933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050177656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-43b0c3e1b6c76f6ea86a3a8b267a0b6fecf189aabe492b9904bbb1597436de413</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEoofCC7BAltiwCfgWJ14hVHGTKrEpa2viTE5cJfHBk7Q6O8Qr8IY8CT6ctlwWLCyP9H_zezx_UTwV_KXgvH5FnMumKrnU-XBbl-ZesRFayVJoYe4XG664Kk0j5EnxiOiSc1FXVjwsTlRjrJBCbYpvF0NCGuLYsW4_wxQ8sdgzYAnBLyHOP75-h-4Kb-su9P1KuWbkh0BLpDgFoEAMd6HD3M-m2OHIrsMyMEKgOMMYlj2DuWO0gyXAyAZcMMUtzpiVx8WDHkbCJzf3afH53duLsw_l-af3H8_enJdeS7OUWrXcKxSt8bXpDUJjQEHTSlMDb02PvheNBWhRW9lay3XbtqKytVamQy3UafH66Ltb2wk7j_OSYHS7FCZIexchuL-VOQxuG6-cENxIq1R2eHHjkOKXFWlxUyCP4wgzxpWc4lVecW0qk9Hn_6CXcU15FQdK2yqPWlWZkkfKp0iUsL-bRnB3yNgdM3Y5Y_crY3ewfvbnP-5abkPNgDoClKV5i-n32_-x_Qk-aLiW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049518955</pqid></control><display><type>article</type><title>Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Wu, Peng ; Salmaniw, Yurij ; Wang, Xiunan</creator><creatorcontrib>Wu, Peng ; Salmaniw, Yurij ; Wang, Xiunan</creatorcontrib><description>Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number
R
0
and show that the disease-free periodic solution is globally attractive when
R
0
<
1
whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when
R
0
>
1
. Moreover, we find that
R
0
is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-024-02097-6</identifier><identifier>PMID: 38691213</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adults ; Advection ; Animals ; Applications of Mathematics ; Basic Reproduction Number - statistics & numerical data ; Chronic illnesses ; Computer Simulation ; Disease control ; Disease prevention ; Disease transmission ; Epidemic models ; Epidemics - statistics & numerical data ; Epidemiological Models ; Heterogeneity ; Humans ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Numerical analysis ; Parasites ; Parasitic diseases ; Schistosomiasis ; Schistosomiasis - epidemiology ; Schistosomiasis - transmission ; Seasonal variations ; Seasons ; Spatial heterogeneity ; Tropical diseases ; Water flow ; Water Movements ; Waterborne diseases</subject><ispartof>Journal of mathematical biology, 2024-06, Vol.88 (6), p.76-76, Article 76</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-43b0c3e1b6c76f6ea86a3a8b267a0b6fecf189aabe492b9904bbb1597436de413</cites><orcidid>0000-0003-4070-4101 ; 0000-0001-7315-755X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-024-02097-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-024-02097-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38691213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Salmaniw, Yurij</creatorcontrib><creatorcontrib>Wang, Xiunan</creatorcontrib><title>Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number
R
0
and show that the disease-free periodic solution is globally attractive when
R
0
<
1
whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when
R
0
>
1
. Moreover, we find that
R
0
is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.</description><subject>Adults</subject><subject>Advection</subject><subject>Animals</subject><subject>Applications of Mathematics</subject><subject>Basic Reproduction Number - statistics & numerical data</subject><subject>Chronic illnesses</subject><subject>Computer Simulation</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Disease transmission</subject><subject>Epidemic models</subject><subject>Epidemics - statistics & numerical data</subject><subject>Epidemiological Models</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Numerical analysis</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Schistosomiasis</subject><subject>Schistosomiasis - epidemiology</subject><subject>Schistosomiasis - transmission</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Spatial heterogeneity</subject><subject>Tropical diseases</subject><subject>Water flow</subject><subject>Water Movements</subject><subject>Waterborne diseases</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctu1TAQhiMEoofCC7BAltiwCfgWJ14hVHGTKrEpa2viTE5cJfHBk7Q6O8Qr8IY8CT6ctlwWLCyP9H_zezx_UTwV_KXgvH5FnMumKrnU-XBbl-ZesRFayVJoYe4XG664Kk0j5EnxiOiSc1FXVjwsTlRjrJBCbYpvF0NCGuLYsW4_wxQ8sdgzYAnBLyHOP75-h-4Kb-su9P1KuWbkh0BLpDgFoEAMd6HD3M-m2OHIrsMyMEKgOMMYlj2DuWO0gyXAyAZcMMUtzpiVx8WDHkbCJzf3afH53duLsw_l-af3H8_enJdeS7OUWrXcKxSt8bXpDUJjQEHTSlMDb02PvheNBWhRW9lay3XbtqKytVamQy3UafH66Ltb2wk7j_OSYHS7FCZIexchuL-VOQxuG6-cENxIq1R2eHHjkOKXFWlxUyCP4wgzxpWc4lVecW0qk9Hn_6CXcU15FQdK2yqPWlWZkkfKp0iUsL-bRnB3yNgdM3Y5Y_crY3ewfvbnP-5abkPNgDoClKV5i-n32_-x_Qk-aLiW</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wu, Peng</creator><creator>Salmaniw, Yurij</creator><creator>Wang, Xiunan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7N</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4070-4101</orcidid><orcidid>https://orcid.org/0000-0001-7315-755X</orcidid></search><sort><creationdate>20240601</creationdate><title>Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity</title><author>Wu, Peng ; Salmaniw, Yurij ; Wang, Xiunan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-43b0c3e1b6c76f6ea86a3a8b267a0b6fecf189aabe492b9904bbb1597436de413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adults</topic><topic>Advection</topic><topic>Animals</topic><topic>Applications of Mathematics</topic><topic>Basic Reproduction Number - statistics & numerical data</topic><topic>Chronic illnesses</topic><topic>Computer Simulation</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Disease transmission</topic><topic>Epidemic models</topic><topic>Epidemics - statistics & numerical data</topic><topic>Epidemiological Models</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Numerical analysis</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Schistosomiasis</topic><topic>Schistosomiasis - epidemiology</topic><topic>Schistosomiasis - transmission</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Spatial heterogeneity</topic><topic>Tropical diseases</topic><topic>Water flow</topic><topic>Water Movements</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Salmaniw, Yurij</creatorcontrib><creatorcontrib>Wang, Xiunan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Peng</au><au>Salmaniw, Yurij</au><au>Wang, Xiunan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>88</volume><issue>6</issue><spage>76</spage><epage>76</epage><pages>76-76</pages><artnum>76</artnum><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number
R
0
and show that the disease-free periodic solution is globally attractive when
R
0
<
1
whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when
R
0
>
1
. Moreover, we find that
R
0
is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38691213</pmid><doi>10.1007/s00285-024-02097-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4070-4101</orcidid><orcidid>https://orcid.org/0000-0001-7315-755X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2024-06, Vol.88 (6), p.76-76, Article 76 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11062933 |
source | MEDLINE; SpringerNature Journals |
subjects | Adults Advection Animals Applications of Mathematics Basic Reproduction Number - statistics & numerical data Chronic illnesses Computer Simulation Disease control Disease prevention Disease transmission Epidemic models Epidemics - statistics & numerical data Epidemiological Models Heterogeneity Humans Mathematical and Computational Biology Mathematical Concepts Mathematical models Mathematics Mathematics and Statistics Models, Biological Numerical analysis Parasites Parasitic diseases Schistosomiasis Schistosomiasis - epidemiology Schistosomiasis - transmission Seasonal variations Seasons Spatial heterogeneity Tropical diseases Water flow Water Movements Waterborne diseases |
title | Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold%20dynamics%20of%20a%20reaction%E2%80%93advection%E2%80%93diffusion%20schistosomiasis%20epidemic%20model%20with%20seasonality%20and%20spatial%20heterogeneity&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Wu,%20Peng&rft.date=2024-06-01&rft.volume=88&rft.issue=6&rft.spage=76&rft.epage=76&rft.pages=76-76&rft.artnum=76&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-024-02097-6&rft_dat=%3Cproquest_pubme%3E3050177656%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049518955&rft_id=info:pmid/38691213&rfr_iscdi=true |