Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity

Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a peri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2024-06, Vol.88 (6), p.76-76, Article 76
Hauptverfasser: Wu, Peng, Salmaniw, Yurij, Wang, Xiunan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 6
container_start_page 76
container_title Journal of mathematical biology
container_volume 88
creator Wu, Peng
Salmaniw, Yurij
Wang, Xiunan
description Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number R 0 and show that the disease-free periodic solution is globally attractive when R 0 < 1 whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when R 0 > 1 . Moreover, we find that R 0 is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.
doi_str_mv 10.1007/s00285-024-02097-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11062933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050177656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-43b0c3e1b6c76f6ea86a3a8b267a0b6fecf189aabe492b9904bbb1597436de413</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEoofCC7BAltiwCfgWJ14hVHGTKrEpa2viTE5cJfHBk7Q6O8Qr8IY8CT6ctlwWLCyP9H_zezx_UTwV_KXgvH5FnMumKrnU-XBbl-ZesRFayVJoYe4XG664Kk0j5EnxiOiSc1FXVjwsTlRjrJBCbYpvF0NCGuLYsW4_wxQ8sdgzYAnBLyHOP75-h-4Kb-su9P1KuWbkh0BLpDgFoEAMd6HD3M-m2OHIrsMyMEKgOMMYlj2DuWO0gyXAyAZcMMUtzpiVx8WDHkbCJzf3afH53duLsw_l-af3H8_enJdeS7OUWrXcKxSt8bXpDUJjQEHTSlMDb02PvheNBWhRW9lay3XbtqKytVamQy3UafH66Ltb2wk7j_OSYHS7FCZIexchuL-VOQxuG6-cENxIq1R2eHHjkOKXFWlxUyCP4wgzxpWc4lVecW0qk9Hn_6CXcU15FQdK2yqPWlWZkkfKp0iUsL-bRnB3yNgdM3Y5Y_crY3ewfvbnP-5abkPNgDoClKV5i-n32_-x_Qk-aLiW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049518955</pqid></control><display><type>article</type><title>Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Wu, Peng ; Salmaniw, Yurij ; Wang, Xiunan</creator><creatorcontrib>Wu, Peng ; Salmaniw, Yurij ; Wang, Xiunan</creatorcontrib><description>Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number R 0 and show that the disease-free periodic solution is globally attractive when R 0 &lt; 1 whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when R 0 &gt; 1 . Moreover, we find that R 0 is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-024-02097-6</identifier><identifier>PMID: 38691213</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adults ; Advection ; Animals ; Applications of Mathematics ; Basic Reproduction Number - statistics &amp; numerical data ; Chronic illnesses ; Computer Simulation ; Disease control ; Disease prevention ; Disease transmission ; Epidemic models ; Epidemics - statistics &amp; numerical data ; Epidemiological Models ; Heterogeneity ; Humans ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Numerical analysis ; Parasites ; Parasitic diseases ; Schistosomiasis ; Schistosomiasis - epidemiology ; Schistosomiasis - transmission ; Seasonal variations ; Seasons ; Spatial heterogeneity ; Tropical diseases ; Water flow ; Water Movements ; Waterborne diseases</subject><ispartof>Journal of mathematical biology, 2024-06, Vol.88 (6), p.76-76, Article 76</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-43b0c3e1b6c76f6ea86a3a8b267a0b6fecf189aabe492b9904bbb1597436de413</cites><orcidid>0000-0003-4070-4101 ; 0000-0001-7315-755X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-024-02097-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-024-02097-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38691213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Salmaniw, Yurij</creatorcontrib><creatorcontrib>Wang, Xiunan</creatorcontrib><title>Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number R 0 and show that the disease-free periodic solution is globally attractive when R 0 &lt; 1 whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when R 0 &gt; 1 . Moreover, we find that R 0 is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.</description><subject>Adults</subject><subject>Advection</subject><subject>Animals</subject><subject>Applications of Mathematics</subject><subject>Basic Reproduction Number - statistics &amp; numerical data</subject><subject>Chronic illnesses</subject><subject>Computer Simulation</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Disease transmission</subject><subject>Epidemic models</subject><subject>Epidemics - statistics &amp; numerical data</subject><subject>Epidemiological Models</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Numerical analysis</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Schistosomiasis</subject><subject>Schistosomiasis - epidemiology</subject><subject>Schistosomiasis - transmission</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Spatial heterogeneity</subject><subject>Tropical diseases</subject><subject>Water flow</subject><subject>Water Movements</subject><subject>Waterborne diseases</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctu1TAQhiMEoofCC7BAltiwCfgWJ14hVHGTKrEpa2viTE5cJfHBk7Q6O8Qr8IY8CT6ctlwWLCyP9H_zezx_UTwV_KXgvH5FnMumKrnU-XBbl-ZesRFayVJoYe4XG664Kk0j5EnxiOiSc1FXVjwsTlRjrJBCbYpvF0NCGuLYsW4_wxQ8sdgzYAnBLyHOP75-h-4Kb-su9P1KuWbkh0BLpDgFoEAMd6HD3M-m2OHIrsMyMEKgOMMYlj2DuWO0gyXAyAZcMMUtzpiVx8WDHkbCJzf3afH53duLsw_l-af3H8_enJdeS7OUWrXcKxSt8bXpDUJjQEHTSlMDb02PvheNBWhRW9lay3XbtqKytVamQy3UafH66Ltb2wk7j_OSYHS7FCZIexchuL-VOQxuG6-cENxIq1R2eHHjkOKXFWlxUyCP4wgzxpWc4lVecW0qk9Hn_6CXcU15FQdK2yqPWlWZkkfKp0iUsL-bRnB3yNgdM3Y5Y_crY3ewfvbnP-5abkPNgDoClKV5i-n32_-x_Qk-aLiW</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wu, Peng</creator><creator>Salmaniw, Yurij</creator><creator>Wang, Xiunan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7N</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4070-4101</orcidid><orcidid>https://orcid.org/0000-0001-7315-755X</orcidid></search><sort><creationdate>20240601</creationdate><title>Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity</title><author>Wu, Peng ; Salmaniw, Yurij ; Wang, Xiunan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-43b0c3e1b6c76f6ea86a3a8b267a0b6fecf189aabe492b9904bbb1597436de413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adults</topic><topic>Advection</topic><topic>Animals</topic><topic>Applications of Mathematics</topic><topic>Basic Reproduction Number - statistics &amp; numerical data</topic><topic>Chronic illnesses</topic><topic>Computer Simulation</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Disease transmission</topic><topic>Epidemic models</topic><topic>Epidemics - statistics &amp; numerical data</topic><topic>Epidemiological Models</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Numerical analysis</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Schistosomiasis</topic><topic>Schistosomiasis - epidemiology</topic><topic>Schistosomiasis - transmission</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Spatial heterogeneity</topic><topic>Tropical diseases</topic><topic>Water flow</topic><topic>Water Movements</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Salmaniw, Yurij</creatorcontrib><creatorcontrib>Wang, Xiunan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Peng</au><au>Salmaniw, Yurij</au><au>Wang, Xiunan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>88</volume><issue>6</issue><spage>76</spage><epage>76</epage><pages>76-76</pages><artnum>76</artnum><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number R 0 and show that the disease-free periodic solution is globally attractive when R 0 &lt; 1 whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when R 0 &gt; 1 . Moreover, we find that R 0 is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38691213</pmid><doi>10.1007/s00285-024-02097-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4070-4101</orcidid><orcidid>https://orcid.org/0000-0001-7315-755X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2024-06, Vol.88 (6), p.76-76, Article 76
issn 0303-6812
1432-1416
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11062933
source MEDLINE; SpringerNature Journals
subjects Adults
Advection
Animals
Applications of Mathematics
Basic Reproduction Number - statistics & numerical data
Chronic illnesses
Computer Simulation
Disease control
Disease prevention
Disease transmission
Epidemic models
Epidemics - statistics & numerical data
Epidemiological Models
Heterogeneity
Humans
Mathematical and Computational Biology
Mathematical Concepts
Mathematical models
Mathematics
Mathematics and Statistics
Models, Biological
Numerical analysis
Parasites
Parasitic diseases
Schistosomiasis
Schistosomiasis - epidemiology
Schistosomiasis - transmission
Seasonal variations
Seasons
Spatial heterogeneity
Tropical diseases
Water flow
Water Movements
Waterborne diseases
title Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold%20dynamics%20of%20a%20reaction%E2%80%93advection%E2%80%93diffusion%20schistosomiasis%20epidemic%20model%20with%20seasonality%20and%20spatial%20heterogeneity&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Wu,%20Peng&rft.date=2024-06-01&rft.volume=88&rft.issue=6&rft.spage=76&rft.epage=76&rft.pages=76-76&rft.artnum=76&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-024-02097-6&rft_dat=%3Cproquest_pubme%3E3050177656%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049518955&rft_id=info:pmid/38691213&rfr_iscdi=true