Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy
Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and c...
Gespeichert in:
Veröffentlicht in: | Nature cancer 2024-03, Vol.5 (4), p.642-658 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | 4 |
container_start_page | 642 |
container_title | Nature cancer |
container_volume | 5 |
creator | Subramanian, Ajay Nemat-Gorgani, Neda Ellis-Caleo, Timothy J van IJzendoorn, David G P Sears, Timothy J Somani, Anish Luca, Bogdan A Zhou, Maggie Y Bradic, Martina Torres, Ileana A Oladipo, Eniola New, Christin Kenney, Deborah E Avedian, Raffi S Steffner, Robert J Binkley, Michael S Mohler, David G Tap, William D D'Angelo, Sandra P van de Rijn, Matt Ganjoo, Kristen N Bui, Nam Q Charville, Gregory W Newman, Aaron M Moding, Everett J |
description | Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies. |
doi_str_mv | 10.1038/s43018-024-00743-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11058033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2934270271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4f3f593a7457d0eaee77589d76c91d1c5e1b3144875bdb0f26aeb25273552ce13</originalsourceid><addsrcrecordid>eNpVkU1PHDEMhqOqqCDgD_SAcuxl2nxuZk6oQqVUQuqh9BxlMh42aJMMcRY0_55ZFhCcbMv264-HkK-cfedMtj9QScbbhgnVMGaUbOZP5EisVqLhUpnP7_xDcop4xxgTmnPdtV_IoWyV6BTXR-Txnys-R0dj8CVDegglpwipUg-bDcXqKiB1aaDgM85YIS5hAeoQsw9LdqCPoa7pVPJtyhj2xVOBIfhKC-CUEwKtmYYYtynXNRQ3zSfkYHQbhNMXe0z-X_66ubhqrv_-_nPx87rxUne1UaMcdSedUdoMDByAMbrtBrPyHR-418B7yZVqje6Hno1i5aAXWhiptfDA5TE53-tO2z7C4JfLitvYqYToymyzC_ZjJoW1vc0PlnOmWyblovDtRaHk-y1gtTHg7jkuQd6iFZ1UwjBhdsPEvnR5JWKB8W0OZ3ZHze6p2YWafaZm56Xp7P2Gby2vjOQTAxeXQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934270271</pqid></control><display><type>article</type><title>Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Subramanian, Ajay ; Nemat-Gorgani, Neda ; Ellis-Caleo, Timothy J ; van IJzendoorn, David G P ; Sears, Timothy J ; Somani, Anish ; Luca, Bogdan A ; Zhou, Maggie Y ; Bradic, Martina ; Torres, Ileana A ; Oladipo, Eniola ; New, Christin ; Kenney, Deborah E ; Avedian, Raffi S ; Steffner, Robert J ; Binkley, Michael S ; Mohler, David G ; Tap, William D ; D'Angelo, Sandra P ; van de Rijn, Matt ; Ganjoo, Kristen N ; Bui, Nam Q ; Charville, Gregory W ; Newman, Aaron M ; Moding, Everett J</creator><creatorcontrib>Subramanian, Ajay ; Nemat-Gorgani, Neda ; Ellis-Caleo, Timothy J ; van IJzendoorn, David G P ; Sears, Timothy J ; Somani, Anish ; Luca, Bogdan A ; Zhou, Maggie Y ; Bradic, Martina ; Torres, Ileana A ; Oladipo, Eniola ; New, Christin ; Kenney, Deborah E ; Avedian, Raffi S ; Steffner, Robert J ; Binkley, Michael S ; Mohler, David G ; Tap, William D ; D'Angelo, Sandra P ; van de Rijn, Matt ; Ganjoo, Kristen N ; Bui, Nam Q ; Charville, Gregory W ; Newman, Aaron M ; Moding, Everett J</creatorcontrib><description>Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.</description><identifier>ISSN: 2662-1347</identifier><identifier>EISSN: 2662-1347</identifier><identifier>DOI: 10.1038/s43018-024-00743-y</identifier><identifier>PMID: 38429415</identifier><language>eng</language><publisher>England</publisher><subject>Gene Expression Regulation, Neoplastic ; Humans ; Immune Checkpoint Inhibitors - pharmacology ; Immune Checkpoint Inhibitors - therapeutic use ; Immunotherapy - methods ; Machine Learning ; Prognosis ; Sarcoma - genetics ; Sarcoma - immunology ; Sarcoma - therapy ; Transcriptome ; Tumor Microenvironment - immunology ; Tumor-Associated Macrophages - immunology</subject><ispartof>Nature cancer, 2024-03, Vol.5 (4), p.642-658</ispartof><rights>2024. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4f3f593a7457d0eaee77589d76c91d1c5e1b3144875bdb0f26aeb25273552ce13</citedby><cites>FETCH-LOGICAL-c359t-4f3f593a7457d0eaee77589d76c91d1c5e1b3144875bdb0f26aeb25273552ce13</cites><orcidid>0000-0002-3217-8335 ; 0000-0001-7913-5351 ; 0000-0002-1857-8172 ; 0000-0001-7892-886X ; 0000-0002-2774-2704 ; 0000-0002-2249-5919 ; 0000-0002-3736-3783 ; 0000-0002-4868-1509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38429415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Ajay</creatorcontrib><creatorcontrib>Nemat-Gorgani, Neda</creatorcontrib><creatorcontrib>Ellis-Caleo, Timothy J</creatorcontrib><creatorcontrib>van IJzendoorn, David G P</creatorcontrib><creatorcontrib>Sears, Timothy J</creatorcontrib><creatorcontrib>Somani, Anish</creatorcontrib><creatorcontrib>Luca, Bogdan A</creatorcontrib><creatorcontrib>Zhou, Maggie Y</creatorcontrib><creatorcontrib>Bradic, Martina</creatorcontrib><creatorcontrib>Torres, Ileana A</creatorcontrib><creatorcontrib>Oladipo, Eniola</creatorcontrib><creatorcontrib>New, Christin</creatorcontrib><creatorcontrib>Kenney, Deborah E</creatorcontrib><creatorcontrib>Avedian, Raffi S</creatorcontrib><creatorcontrib>Steffner, Robert J</creatorcontrib><creatorcontrib>Binkley, Michael S</creatorcontrib><creatorcontrib>Mohler, David G</creatorcontrib><creatorcontrib>Tap, William D</creatorcontrib><creatorcontrib>D'Angelo, Sandra P</creatorcontrib><creatorcontrib>van de Rijn, Matt</creatorcontrib><creatorcontrib>Ganjoo, Kristen N</creatorcontrib><creatorcontrib>Bui, Nam Q</creatorcontrib><creatorcontrib>Charville, Gregory W</creatorcontrib><creatorcontrib>Newman, Aaron M</creatorcontrib><creatorcontrib>Moding, Everett J</creatorcontrib><title>Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy</title><title>Nature cancer</title><addtitle>Nat Cancer</addtitle><description>Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.</description><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Immune Checkpoint Inhibitors - pharmacology</subject><subject>Immune Checkpoint Inhibitors - therapeutic use</subject><subject>Immunotherapy - methods</subject><subject>Machine Learning</subject><subject>Prognosis</subject><subject>Sarcoma - genetics</subject><subject>Sarcoma - immunology</subject><subject>Sarcoma - therapy</subject><subject>Transcriptome</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor-Associated Macrophages - immunology</subject><issn>2662-1347</issn><issn>2662-1347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PHDEMhqOqqCDgD_SAcuxl2nxuZk6oQqVUQuqh9BxlMh42aJMMcRY0_55ZFhCcbMv264-HkK-cfedMtj9QScbbhgnVMGaUbOZP5EisVqLhUpnP7_xDcop4xxgTmnPdtV_IoWyV6BTXR-Txnys-R0dj8CVDegglpwipUg-bDcXqKiB1aaDgM85YIS5hAeoQsw9LdqCPoa7pVPJtyhj2xVOBIfhKC-CUEwKtmYYYtynXNRQ3zSfkYHQbhNMXe0z-X_66ubhqrv_-_nPx87rxUne1UaMcdSedUdoMDByAMbrtBrPyHR-418B7yZVqje6Hno1i5aAXWhiptfDA5TE53-tO2z7C4JfLitvYqYToymyzC_ZjJoW1vc0PlnOmWyblovDtRaHk-y1gtTHg7jkuQd6iFZ1UwjBhdsPEvnR5JWKB8W0OZ3ZHze6p2YWafaZm56Xp7P2Gby2vjOQTAxeXQQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Subramanian, Ajay</creator><creator>Nemat-Gorgani, Neda</creator><creator>Ellis-Caleo, Timothy J</creator><creator>van IJzendoorn, David G P</creator><creator>Sears, Timothy J</creator><creator>Somani, Anish</creator><creator>Luca, Bogdan A</creator><creator>Zhou, Maggie Y</creator><creator>Bradic, Martina</creator><creator>Torres, Ileana A</creator><creator>Oladipo, Eniola</creator><creator>New, Christin</creator><creator>Kenney, Deborah E</creator><creator>Avedian, Raffi S</creator><creator>Steffner, Robert J</creator><creator>Binkley, Michael S</creator><creator>Mohler, David G</creator><creator>Tap, William D</creator><creator>D'Angelo, Sandra P</creator><creator>van de Rijn, Matt</creator><creator>Ganjoo, Kristen N</creator><creator>Bui, Nam Q</creator><creator>Charville, Gregory W</creator><creator>Newman, Aaron M</creator><creator>Moding, Everett J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3217-8335</orcidid><orcidid>https://orcid.org/0000-0001-7913-5351</orcidid><orcidid>https://orcid.org/0000-0002-1857-8172</orcidid><orcidid>https://orcid.org/0000-0001-7892-886X</orcidid><orcidid>https://orcid.org/0000-0002-2774-2704</orcidid><orcidid>https://orcid.org/0000-0002-2249-5919</orcidid><orcidid>https://orcid.org/0000-0002-3736-3783</orcidid><orcidid>https://orcid.org/0000-0002-4868-1509</orcidid></search><sort><creationdate>20240301</creationdate><title>Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy</title><author>Subramanian, Ajay ; Nemat-Gorgani, Neda ; Ellis-Caleo, Timothy J ; van IJzendoorn, David G P ; Sears, Timothy J ; Somani, Anish ; Luca, Bogdan A ; Zhou, Maggie Y ; Bradic, Martina ; Torres, Ileana A ; Oladipo, Eniola ; New, Christin ; Kenney, Deborah E ; Avedian, Raffi S ; Steffner, Robert J ; Binkley, Michael S ; Mohler, David G ; Tap, William D ; D'Angelo, Sandra P ; van de Rijn, Matt ; Ganjoo, Kristen N ; Bui, Nam Q ; Charville, Gregory W ; Newman, Aaron M ; Moding, Everett J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4f3f593a7457d0eaee77589d76c91d1c5e1b3144875bdb0f26aeb25273552ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Immune Checkpoint Inhibitors - pharmacology</topic><topic>Immune Checkpoint Inhibitors - therapeutic use</topic><topic>Immunotherapy - methods</topic><topic>Machine Learning</topic><topic>Prognosis</topic><topic>Sarcoma - genetics</topic><topic>Sarcoma - immunology</topic><topic>Sarcoma - therapy</topic><topic>Transcriptome</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor-Associated Macrophages - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Ajay</creatorcontrib><creatorcontrib>Nemat-Gorgani, Neda</creatorcontrib><creatorcontrib>Ellis-Caleo, Timothy J</creatorcontrib><creatorcontrib>van IJzendoorn, David G P</creatorcontrib><creatorcontrib>Sears, Timothy J</creatorcontrib><creatorcontrib>Somani, Anish</creatorcontrib><creatorcontrib>Luca, Bogdan A</creatorcontrib><creatorcontrib>Zhou, Maggie Y</creatorcontrib><creatorcontrib>Bradic, Martina</creatorcontrib><creatorcontrib>Torres, Ileana A</creatorcontrib><creatorcontrib>Oladipo, Eniola</creatorcontrib><creatorcontrib>New, Christin</creatorcontrib><creatorcontrib>Kenney, Deborah E</creatorcontrib><creatorcontrib>Avedian, Raffi S</creatorcontrib><creatorcontrib>Steffner, Robert J</creatorcontrib><creatorcontrib>Binkley, Michael S</creatorcontrib><creatorcontrib>Mohler, David G</creatorcontrib><creatorcontrib>Tap, William D</creatorcontrib><creatorcontrib>D'Angelo, Sandra P</creatorcontrib><creatorcontrib>van de Rijn, Matt</creatorcontrib><creatorcontrib>Ganjoo, Kristen N</creatorcontrib><creatorcontrib>Bui, Nam Q</creatorcontrib><creatorcontrib>Charville, Gregory W</creatorcontrib><creatorcontrib>Newman, Aaron M</creatorcontrib><creatorcontrib>Moding, Everett J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Ajay</au><au>Nemat-Gorgani, Neda</au><au>Ellis-Caleo, Timothy J</au><au>van IJzendoorn, David G P</au><au>Sears, Timothy J</au><au>Somani, Anish</au><au>Luca, Bogdan A</au><au>Zhou, Maggie Y</au><au>Bradic, Martina</au><au>Torres, Ileana A</au><au>Oladipo, Eniola</au><au>New, Christin</au><au>Kenney, Deborah E</au><au>Avedian, Raffi S</au><au>Steffner, Robert J</au><au>Binkley, Michael S</au><au>Mohler, David G</au><au>Tap, William D</au><au>D'Angelo, Sandra P</au><au>van de Rijn, Matt</au><au>Ganjoo, Kristen N</au><au>Bui, Nam Q</au><au>Charville, Gregory W</au><au>Newman, Aaron M</au><au>Moding, Everett J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy</atitle><jtitle>Nature cancer</jtitle><addtitle>Nat Cancer</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>5</volume><issue>4</issue><spage>642</spage><epage>658</epage><pages>642-658</pages><issn>2662-1347</issn><eissn>2662-1347</eissn><abstract>Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.</abstract><cop>England</cop><pmid>38429415</pmid><doi>10.1038/s43018-024-00743-y</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3217-8335</orcidid><orcidid>https://orcid.org/0000-0001-7913-5351</orcidid><orcidid>https://orcid.org/0000-0002-1857-8172</orcidid><orcidid>https://orcid.org/0000-0001-7892-886X</orcidid><orcidid>https://orcid.org/0000-0002-2774-2704</orcidid><orcidid>https://orcid.org/0000-0002-2249-5919</orcidid><orcidid>https://orcid.org/0000-0002-3736-3783</orcidid><orcidid>https://orcid.org/0000-0002-4868-1509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-1347 |
ispartof | Nature cancer, 2024-03, Vol.5 (4), p.642-658 |
issn | 2662-1347 2662-1347 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11058033 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Gene Expression Regulation, Neoplastic Humans Immune Checkpoint Inhibitors - pharmacology Immune Checkpoint Inhibitors - therapeutic use Immunotherapy - methods Machine Learning Prognosis Sarcoma - genetics Sarcoma - immunology Sarcoma - therapy Transcriptome Tumor Microenvironment - immunology Tumor-Associated Macrophages - immunology |
title | Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sarcoma%20microenvironment%20cell%20states%20and%20ecosystems%20are%20associated%20with%20prognosis%20and%20predict%20response%20to%20immunotherapy&rft.jtitle=Nature%20cancer&rft.au=Subramanian,%20Ajay&rft.date=2024-03-01&rft.volume=5&rft.issue=4&rft.spage=642&rft.epage=658&rft.pages=642-658&rft.issn=2662-1347&rft.eissn=2662-1347&rft_id=info:doi/10.1038/s43018-024-00743-y&rft_dat=%3Cproquest_pubme%3E2934270271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2934270271&rft_id=info:pmid/38429415&rfr_iscdi=true |