Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy

Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cancer 2024-03, Vol.5 (4), p.642-658
Hauptverfasser: Subramanian, Ajay, Nemat-Gorgani, Neda, Ellis-Caleo, Timothy J, van IJzendoorn, David G P, Sears, Timothy J, Somani, Anish, Luca, Bogdan A, Zhou, Maggie Y, Bradic, Martina, Torres, Ileana A, Oladipo, Eniola, New, Christin, Kenney, Deborah E, Avedian, Raffi S, Steffner, Robert J, Binkley, Michael S, Mohler, David G, Tap, William D, D'Angelo, Sandra P, van de Rijn, Matt, Ganjoo, Kristen N, Bui, Nam Q, Charville, Gregory W, Newman, Aaron M, Moding, Everett J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 658
container_issue 4
container_start_page 642
container_title Nature cancer
container_volume 5
creator Subramanian, Ajay
Nemat-Gorgani, Neda
Ellis-Caleo, Timothy J
van IJzendoorn, David G P
Sears, Timothy J
Somani, Anish
Luca, Bogdan A
Zhou, Maggie Y
Bradic, Martina
Torres, Ileana A
Oladipo, Eniola
New, Christin
Kenney, Deborah E
Avedian, Raffi S
Steffner, Robert J
Binkley, Michael S
Mohler, David G
Tap, William D
D'Angelo, Sandra P
van de Rijn, Matt
Ganjoo, Kristen N
Bui, Nam Q
Charville, Gregory W
Newman, Aaron M
Moding, Everett J
description Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.
doi_str_mv 10.1038/s43018-024-00743-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11058033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2934270271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4f3f593a7457d0eaee77589d76c91d1c5e1b3144875bdb0f26aeb25273552ce13</originalsourceid><addsrcrecordid>eNpVkU1PHDEMhqOqqCDgD_SAcuxl2nxuZk6oQqVUQuqh9BxlMh42aJMMcRY0_55ZFhCcbMv264-HkK-cfedMtj9QScbbhgnVMGaUbOZP5EisVqLhUpnP7_xDcop4xxgTmnPdtV_IoWyV6BTXR-Txnys-R0dj8CVDegglpwipUg-bDcXqKiB1aaDgM85YIS5hAeoQsw9LdqCPoa7pVPJtyhj2xVOBIfhKC-CUEwKtmYYYtynXNRQ3zSfkYHQbhNMXe0z-X_66ubhqrv_-_nPx87rxUne1UaMcdSedUdoMDByAMbrtBrPyHR-418B7yZVqje6Hno1i5aAXWhiptfDA5TE53-tO2z7C4JfLitvYqYToymyzC_ZjJoW1vc0PlnOmWyblovDtRaHk-y1gtTHg7jkuQd6iFZ1UwjBhdsPEvnR5JWKB8W0OZ3ZHze6p2YWafaZm56Xp7P2Gby2vjOQTAxeXQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934270271</pqid></control><display><type>article</type><title>Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Subramanian, Ajay ; Nemat-Gorgani, Neda ; Ellis-Caleo, Timothy J ; van IJzendoorn, David G P ; Sears, Timothy J ; Somani, Anish ; Luca, Bogdan A ; Zhou, Maggie Y ; Bradic, Martina ; Torres, Ileana A ; Oladipo, Eniola ; New, Christin ; Kenney, Deborah E ; Avedian, Raffi S ; Steffner, Robert J ; Binkley, Michael S ; Mohler, David G ; Tap, William D ; D'Angelo, Sandra P ; van de Rijn, Matt ; Ganjoo, Kristen N ; Bui, Nam Q ; Charville, Gregory W ; Newman, Aaron M ; Moding, Everett J</creator><creatorcontrib>Subramanian, Ajay ; Nemat-Gorgani, Neda ; Ellis-Caleo, Timothy J ; van IJzendoorn, David G P ; Sears, Timothy J ; Somani, Anish ; Luca, Bogdan A ; Zhou, Maggie Y ; Bradic, Martina ; Torres, Ileana A ; Oladipo, Eniola ; New, Christin ; Kenney, Deborah E ; Avedian, Raffi S ; Steffner, Robert J ; Binkley, Michael S ; Mohler, David G ; Tap, William D ; D'Angelo, Sandra P ; van de Rijn, Matt ; Ganjoo, Kristen N ; Bui, Nam Q ; Charville, Gregory W ; Newman, Aaron M ; Moding, Everett J</creatorcontrib><description>Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.</description><identifier>ISSN: 2662-1347</identifier><identifier>EISSN: 2662-1347</identifier><identifier>DOI: 10.1038/s43018-024-00743-y</identifier><identifier>PMID: 38429415</identifier><language>eng</language><publisher>England</publisher><subject>Gene Expression Regulation, Neoplastic ; Humans ; Immune Checkpoint Inhibitors - pharmacology ; Immune Checkpoint Inhibitors - therapeutic use ; Immunotherapy - methods ; Machine Learning ; Prognosis ; Sarcoma - genetics ; Sarcoma - immunology ; Sarcoma - therapy ; Transcriptome ; Tumor Microenvironment - immunology ; Tumor-Associated Macrophages - immunology</subject><ispartof>Nature cancer, 2024-03, Vol.5 (4), p.642-658</ispartof><rights>2024. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4f3f593a7457d0eaee77589d76c91d1c5e1b3144875bdb0f26aeb25273552ce13</citedby><cites>FETCH-LOGICAL-c359t-4f3f593a7457d0eaee77589d76c91d1c5e1b3144875bdb0f26aeb25273552ce13</cites><orcidid>0000-0002-3217-8335 ; 0000-0001-7913-5351 ; 0000-0002-1857-8172 ; 0000-0001-7892-886X ; 0000-0002-2774-2704 ; 0000-0002-2249-5919 ; 0000-0002-3736-3783 ; 0000-0002-4868-1509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38429415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Ajay</creatorcontrib><creatorcontrib>Nemat-Gorgani, Neda</creatorcontrib><creatorcontrib>Ellis-Caleo, Timothy J</creatorcontrib><creatorcontrib>van IJzendoorn, David G P</creatorcontrib><creatorcontrib>Sears, Timothy J</creatorcontrib><creatorcontrib>Somani, Anish</creatorcontrib><creatorcontrib>Luca, Bogdan A</creatorcontrib><creatorcontrib>Zhou, Maggie Y</creatorcontrib><creatorcontrib>Bradic, Martina</creatorcontrib><creatorcontrib>Torres, Ileana A</creatorcontrib><creatorcontrib>Oladipo, Eniola</creatorcontrib><creatorcontrib>New, Christin</creatorcontrib><creatorcontrib>Kenney, Deborah E</creatorcontrib><creatorcontrib>Avedian, Raffi S</creatorcontrib><creatorcontrib>Steffner, Robert J</creatorcontrib><creatorcontrib>Binkley, Michael S</creatorcontrib><creatorcontrib>Mohler, David G</creatorcontrib><creatorcontrib>Tap, William D</creatorcontrib><creatorcontrib>D'Angelo, Sandra P</creatorcontrib><creatorcontrib>van de Rijn, Matt</creatorcontrib><creatorcontrib>Ganjoo, Kristen N</creatorcontrib><creatorcontrib>Bui, Nam Q</creatorcontrib><creatorcontrib>Charville, Gregory W</creatorcontrib><creatorcontrib>Newman, Aaron M</creatorcontrib><creatorcontrib>Moding, Everett J</creatorcontrib><title>Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy</title><title>Nature cancer</title><addtitle>Nat Cancer</addtitle><description>Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.</description><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Immune Checkpoint Inhibitors - pharmacology</subject><subject>Immune Checkpoint Inhibitors - therapeutic use</subject><subject>Immunotherapy - methods</subject><subject>Machine Learning</subject><subject>Prognosis</subject><subject>Sarcoma - genetics</subject><subject>Sarcoma - immunology</subject><subject>Sarcoma - therapy</subject><subject>Transcriptome</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumor-Associated Macrophages - immunology</subject><issn>2662-1347</issn><issn>2662-1347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PHDEMhqOqqCDgD_SAcuxl2nxuZk6oQqVUQuqh9BxlMh42aJMMcRY0_55ZFhCcbMv264-HkK-cfedMtj9QScbbhgnVMGaUbOZP5EisVqLhUpnP7_xDcop4xxgTmnPdtV_IoWyV6BTXR-Txnys-R0dj8CVDegglpwipUg-bDcXqKiB1aaDgM85YIS5hAeoQsw9LdqCPoa7pVPJtyhj2xVOBIfhKC-CUEwKtmYYYtynXNRQ3zSfkYHQbhNMXe0z-X_66ubhqrv_-_nPx87rxUne1UaMcdSedUdoMDByAMbrtBrPyHR-418B7yZVqje6Hno1i5aAXWhiptfDA5TE53-tO2z7C4JfLitvYqYToymyzC_ZjJoW1vc0PlnOmWyblovDtRaHk-y1gtTHg7jkuQd6iFZ1UwjBhdsPEvnR5JWKB8W0OZ3ZHze6p2YWafaZm56Xp7P2Gby2vjOQTAxeXQQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Subramanian, Ajay</creator><creator>Nemat-Gorgani, Neda</creator><creator>Ellis-Caleo, Timothy J</creator><creator>van IJzendoorn, David G P</creator><creator>Sears, Timothy J</creator><creator>Somani, Anish</creator><creator>Luca, Bogdan A</creator><creator>Zhou, Maggie Y</creator><creator>Bradic, Martina</creator><creator>Torres, Ileana A</creator><creator>Oladipo, Eniola</creator><creator>New, Christin</creator><creator>Kenney, Deborah E</creator><creator>Avedian, Raffi S</creator><creator>Steffner, Robert J</creator><creator>Binkley, Michael S</creator><creator>Mohler, David G</creator><creator>Tap, William D</creator><creator>D'Angelo, Sandra P</creator><creator>van de Rijn, Matt</creator><creator>Ganjoo, Kristen N</creator><creator>Bui, Nam Q</creator><creator>Charville, Gregory W</creator><creator>Newman, Aaron M</creator><creator>Moding, Everett J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3217-8335</orcidid><orcidid>https://orcid.org/0000-0001-7913-5351</orcidid><orcidid>https://orcid.org/0000-0002-1857-8172</orcidid><orcidid>https://orcid.org/0000-0001-7892-886X</orcidid><orcidid>https://orcid.org/0000-0002-2774-2704</orcidid><orcidid>https://orcid.org/0000-0002-2249-5919</orcidid><orcidid>https://orcid.org/0000-0002-3736-3783</orcidid><orcidid>https://orcid.org/0000-0002-4868-1509</orcidid></search><sort><creationdate>20240301</creationdate><title>Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy</title><author>Subramanian, Ajay ; Nemat-Gorgani, Neda ; Ellis-Caleo, Timothy J ; van IJzendoorn, David G P ; Sears, Timothy J ; Somani, Anish ; Luca, Bogdan A ; Zhou, Maggie Y ; Bradic, Martina ; Torres, Ileana A ; Oladipo, Eniola ; New, Christin ; Kenney, Deborah E ; Avedian, Raffi S ; Steffner, Robert J ; Binkley, Michael S ; Mohler, David G ; Tap, William D ; D'Angelo, Sandra P ; van de Rijn, Matt ; Ganjoo, Kristen N ; Bui, Nam Q ; Charville, Gregory W ; Newman, Aaron M ; Moding, Everett J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4f3f593a7457d0eaee77589d76c91d1c5e1b3144875bdb0f26aeb25273552ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Immune Checkpoint Inhibitors - pharmacology</topic><topic>Immune Checkpoint Inhibitors - therapeutic use</topic><topic>Immunotherapy - methods</topic><topic>Machine Learning</topic><topic>Prognosis</topic><topic>Sarcoma - genetics</topic><topic>Sarcoma - immunology</topic><topic>Sarcoma - therapy</topic><topic>Transcriptome</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumor-Associated Macrophages - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Ajay</creatorcontrib><creatorcontrib>Nemat-Gorgani, Neda</creatorcontrib><creatorcontrib>Ellis-Caleo, Timothy J</creatorcontrib><creatorcontrib>van IJzendoorn, David G P</creatorcontrib><creatorcontrib>Sears, Timothy J</creatorcontrib><creatorcontrib>Somani, Anish</creatorcontrib><creatorcontrib>Luca, Bogdan A</creatorcontrib><creatorcontrib>Zhou, Maggie Y</creatorcontrib><creatorcontrib>Bradic, Martina</creatorcontrib><creatorcontrib>Torres, Ileana A</creatorcontrib><creatorcontrib>Oladipo, Eniola</creatorcontrib><creatorcontrib>New, Christin</creatorcontrib><creatorcontrib>Kenney, Deborah E</creatorcontrib><creatorcontrib>Avedian, Raffi S</creatorcontrib><creatorcontrib>Steffner, Robert J</creatorcontrib><creatorcontrib>Binkley, Michael S</creatorcontrib><creatorcontrib>Mohler, David G</creatorcontrib><creatorcontrib>Tap, William D</creatorcontrib><creatorcontrib>D'Angelo, Sandra P</creatorcontrib><creatorcontrib>van de Rijn, Matt</creatorcontrib><creatorcontrib>Ganjoo, Kristen N</creatorcontrib><creatorcontrib>Bui, Nam Q</creatorcontrib><creatorcontrib>Charville, Gregory W</creatorcontrib><creatorcontrib>Newman, Aaron M</creatorcontrib><creatorcontrib>Moding, Everett J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Ajay</au><au>Nemat-Gorgani, Neda</au><au>Ellis-Caleo, Timothy J</au><au>van IJzendoorn, David G P</au><au>Sears, Timothy J</au><au>Somani, Anish</au><au>Luca, Bogdan A</au><au>Zhou, Maggie Y</au><au>Bradic, Martina</au><au>Torres, Ileana A</au><au>Oladipo, Eniola</au><au>New, Christin</au><au>Kenney, Deborah E</au><au>Avedian, Raffi S</au><au>Steffner, Robert J</au><au>Binkley, Michael S</au><au>Mohler, David G</au><au>Tap, William D</au><au>D'Angelo, Sandra P</au><au>van de Rijn, Matt</au><au>Ganjoo, Kristen N</au><au>Bui, Nam Q</au><au>Charville, Gregory W</au><au>Newman, Aaron M</au><au>Moding, Everett J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy</atitle><jtitle>Nature cancer</jtitle><addtitle>Nat Cancer</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>5</volume><issue>4</issue><spage>642</spage><epage>658</epage><pages>642-658</pages><issn>2662-1347</issn><eissn>2662-1347</eissn><abstract>Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.</abstract><cop>England</cop><pmid>38429415</pmid><doi>10.1038/s43018-024-00743-y</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3217-8335</orcidid><orcidid>https://orcid.org/0000-0001-7913-5351</orcidid><orcidid>https://orcid.org/0000-0002-1857-8172</orcidid><orcidid>https://orcid.org/0000-0001-7892-886X</orcidid><orcidid>https://orcid.org/0000-0002-2774-2704</orcidid><orcidid>https://orcid.org/0000-0002-2249-5919</orcidid><orcidid>https://orcid.org/0000-0002-3736-3783</orcidid><orcidid>https://orcid.org/0000-0002-4868-1509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2662-1347
ispartof Nature cancer, 2024-03, Vol.5 (4), p.642-658
issn 2662-1347
2662-1347
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11058033
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Gene Expression Regulation, Neoplastic
Humans
Immune Checkpoint Inhibitors - pharmacology
Immune Checkpoint Inhibitors - therapeutic use
Immunotherapy - methods
Machine Learning
Prognosis
Sarcoma - genetics
Sarcoma - immunology
Sarcoma - therapy
Transcriptome
Tumor Microenvironment - immunology
Tumor-Associated Macrophages - immunology
title Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sarcoma%20microenvironment%20cell%20states%20and%20ecosystems%20are%20associated%20with%20prognosis%20and%20predict%20response%20to%20immunotherapy&rft.jtitle=Nature%20cancer&rft.au=Subramanian,%20Ajay&rft.date=2024-03-01&rft.volume=5&rft.issue=4&rft.spage=642&rft.epage=658&rft.pages=642-658&rft.issn=2662-1347&rft.eissn=2662-1347&rft_id=info:doi/10.1038/s43018-024-00743-y&rft_dat=%3Cproquest_pubme%3E2934270271%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2934270271&rft_id=info:pmid/38429415&rfr_iscdi=true