Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration

Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature microbiology 2024-01, Vol.9 (1), p.55-69
Hauptverfasser: Little, Alexander S., Younker, Isaac T., Schechter, Matthew S., Bernardino, Paola Nol, Méheust, Raphaël, Stemczynski, Joshua, Scorza, Kaylie, Mullowney, Michael W., Sharan, Deepti, Waligurski, Emily, Smith, Rita, Ramanswamy, Ramanujam, Leiter, William, Moran, David, McMillin, Mary, Odenwald, Matthew A., Iavarone, Anthony T., Sidebottom, Ashley M., Sundararajan, Anitha, Pamer, Eric G., Eren, A. Murat, Light, Samuel H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 55
container_title Nature microbiology
container_volume 9
creator Little, Alexander S.
Younker, Isaac T.
Schechter, Matthew S.
Bernardino, Paola Nol
Méheust, Raphaël
Stemczynski, Joshua
Scorza, Kaylie
Mullowney, Michael W.
Sharan, Deepti
Waligurski, Emily
Smith, Rita
Ramanswamy, Ramanujam
Leiter, William
Moran, David
McMillin, Mary
Odenwald, Matthew A.
Iavarone, Anthony T.
Sidebottom, Ashley M.
Sundararajan, Anitha
Pamer, Eric G.
Eren, A. Murat
Light, Samuel H.
description Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family ( Sutterella wadsworthensis , Eggerthella lenta and Holdemania filiformis ), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme–substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome. Three distinct families of gut bacteria encode an unprecedented number of respiratory-like reductases per genome to perform anaerobic respiration of biomedically relevant substrates.
doi_str_mv 10.1038/s41564-023-01560-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11055453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910733235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-1db9d497bcc63b944060943dd648eeea5c55b8f05f523480f5e4c562938c03db3</originalsourceid><addsrcrecordid>eNp9kU1PFTEYhRujEYL8ARemiRs3xX5PZ2UMqJiQuIF17cc7l5K502vbIeHfW7yI6MJV3_Q872lPDkKvGT1hVJj3VTKlJaFcENonSvgzdMipMkTxQT9_Mh-g41pvKKVMc62NfokOhGHDwMfhEH0_S9BcuSPYLRFf59pIhJJuIeJtF3yeU4OKXQG81n7p73DsaqmAN2vD3oXWcYenXLqDg5J9CrhA3aXiWsrLK_RicnOF44fzCF19_nR5ek4uvn35evrxggQ5qEZY9GOU4-BD0MKPUlJNRyli1NIAgFNBKW8mqibFhTR0UiCD0nwUJlARvThCH_a-u9VvIQZYWnGz3ZW07fFsdsn-rSzp2m7yrWWMKiWV6A7vHhxK_rFCbXabaoB5dgvktVo-MmYkF9x09O0_6E1ey9Lz3VN0EIIL1Sm-p0LJtRaYHn_DqL0v0e5LtL1E-6tEy_vSm6c5Hld-V9YBsQdql5YNlD9v_8f2J0lGqD8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910733235</pqid></control><display><type>article</type><title>Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Little, Alexander S. ; Younker, Isaac T. ; Schechter, Matthew S. ; Bernardino, Paola Nol ; Méheust, Raphaël ; Stemczynski, Joshua ; Scorza, Kaylie ; Mullowney, Michael W. ; Sharan, Deepti ; Waligurski, Emily ; Smith, Rita ; Ramanswamy, Ramanujam ; Leiter, William ; Moran, David ; McMillin, Mary ; Odenwald, Matthew A. ; Iavarone, Anthony T. ; Sidebottom, Ashley M. ; Sundararajan, Anitha ; Pamer, Eric G. ; Eren, A. Murat ; Light, Samuel H.</creator><creatorcontrib>Little, Alexander S. ; Younker, Isaac T. ; Schechter, Matthew S. ; Bernardino, Paola Nol ; Méheust, Raphaël ; Stemczynski, Joshua ; Scorza, Kaylie ; Mullowney, Michael W. ; Sharan, Deepti ; Waligurski, Emily ; Smith, Rita ; Ramanswamy, Ramanujam ; Leiter, William ; Moran, David ; McMillin, Mary ; Odenwald, Matthew A. ; Iavarone, Anthony T. ; Sidebottom, Ashley M. ; Sundararajan, Anitha ; Pamer, Eric G. ; Eren, A. Murat ; Light, Samuel H.</creatorcontrib><description>Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family ( Sutterella wadsworthensis , Eggerthella lenta and Holdemania filiformis ), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme–substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome. Three distinct families of gut bacteria encode an unprecedented number of respiratory-like reductases per genome to perform anaerobic respiration of biomedically relevant substrates.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-023-01560-2</identifier><identifier>PMID: 38177297</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 45/43 ; 631/326/1320 ; 631/326/2565/2134 ; 631/45/320 ; 631/45/607/1168 ; 64/60 ; 82/58 ; 82/80 ; Anaerobic microorganisms ; Anaerobic respiration ; Anaerobiosis ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Biomedical and Life Sciences ; Ecosystem ; Energy metabolism ; Genomes ; Humans ; Infectious Diseases ; Life Sciences ; Medical Microbiology ; Metabolites ; Microbiology ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Parasitology ; Respiration ; Resveratrol ; Virology</subject><ispartof>Nature microbiology, 2024-01, Vol.9 (1), p.55-69</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-1db9d497bcc63b944060943dd648eeea5c55b8f05f523480f5e4c562938c03db3</citedby><cites>FETCH-LOGICAL-c475t-1db9d497bcc63b944060943dd648eeea5c55b8f05f523480f5e4c562938c03db3</cites><orcidid>0000-0003-2365-8828 ; 0000-0003-1740-6472 ; 0000-0002-2556-1707 ; 0000-0002-8435-3203 ; 0000-0002-4847-426X ; 0000-0002-7022-9068 ; 0000-0002-8074-1348 ; 0000-0002-6755-9904 ; 0000-0001-7448-6574 ; 0000-0002-2884-4307 ; 0000-0001-9013-4827 ; 0000-0002-7546-5019 ; 0000-0002-8327-1935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38177297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Little, Alexander S.</creatorcontrib><creatorcontrib>Younker, Isaac T.</creatorcontrib><creatorcontrib>Schechter, Matthew S.</creatorcontrib><creatorcontrib>Bernardino, Paola Nol</creatorcontrib><creatorcontrib>Méheust, Raphaël</creatorcontrib><creatorcontrib>Stemczynski, Joshua</creatorcontrib><creatorcontrib>Scorza, Kaylie</creatorcontrib><creatorcontrib>Mullowney, Michael W.</creatorcontrib><creatorcontrib>Sharan, Deepti</creatorcontrib><creatorcontrib>Waligurski, Emily</creatorcontrib><creatorcontrib>Smith, Rita</creatorcontrib><creatorcontrib>Ramanswamy, Ramanujam</creatorcontrib><creatorcontrib>Leiter, William</creatorcontrib><creatorcontrib>Moran, David</creatorcontrib><creatorcontrib>McMillin, Mary</creatorcontrib><creatorcontrib>Odenwald, Matthew A.</creatorcontrib><creatorcontrib>Iavarone, Anthony T.</creatorcontrib><creatorcontrib>Sidebottom, Ashley M.</creatorcontrib><creatorcontrib>Sundararajan, Anitha</creatorcontrib><creatorcontrib>Pamer, Eric G.</creatorcontrib><creatorcontrib>Eren, A. Murat</creatorcontrib><creatorcontrib>Light, Samuel H.</creatorcontrib><title>Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family ( Sutterella wadsworthensis , Eggerthella lenta and Holdemania filiformis ), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme–substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome. Three distinct families of gut bacteria encode an unprecedented number of respiratory-like reductases per genome to perform anaerobic respiration of biomedically relevant substrates.</description><subject>38/39</subject><subject>45/43</subject><subject>631/326/1320</subject><subject>631/326/2565/2134</subject><subject>631/45/320</subject><subject>631/45/607/1168</subject><subject>64/60</subject><subject>82/58</subject><subject>82/80</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobic respiration</subject><subject>Anaerobiosis</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Ecosystem</subject><subject>Energy metabolism</subject><subject>Genomes</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Parasitology</subject><subject>Respiration</subject><subject>Resveratrol</subject><subject>Virology</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1PFTEYhRujEYL8ARemiRs3xX5PZ2UMqJiQuIF17cc7l5K502vbIeHfW7yI6MJV3_Q872lPDkKvGT1hVJj3VTKlJaFcENonSvgzdMipMkTxQT9_Mh-g41pvKKVMc62NfokOhGHDwMfhEH0_S9BcuSPYLRFf59pIhJJuIeJtF3yeU4OKXQG81n7p73DsaqmAN2vD3oXWcYenXLqDg5J9CrhA3aXiWsrLK_RicnOF44fzCF19_nR5ek4uvn35evrxggQ5qEZY9GOU4-BD0MKPUlJNRyli1NIAgFNBKW8mqibFhTR0UiCD0nwUJlARvThCH_a-u9VvIQZYWnGz3ZW07fFsdsn-rSzp2m7yrWWMKiWV6A7vHhxK_rFCbXabaoB5dgvktVo-MmYkF9x09O0_6E1ey9Lz3VN0EIIL1Sm-p0LJtRaYHn_DqL0v0e5LtL1E-6tEy_vSm6c5Hld-V9YBsQdql5YNlD9v_8f2J0lGqD8</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Little, Alexander S.</creator><creator>Younker, Isaac T.</creator><creator>Schechter, Matthew S.</creator><creator>Bernardino, Paola Nol</creator><creator>Méheust, Raphaël</creator><creator>Stemczynski, Joshua</creator><creator>Scorza, Kaylie</creator><creator>Mullowney, Michael W.</creator><creator>Sharan, Deepti</creator><creator>Waligurski, Emily</creator><creator>Smith, Rita</creator><creator>Ramanswamy, Ramanujam</creator><creator>Leiter, William</creator><creator>Moran, David</creator><creator>McMillin, Mary</creator><creator>Odenwald, Matthew A.</creator><creator>Iavarone, Anthony T.</creator><creator>Sidebottom, Ashley M.</creator><creator>Sundararajan, Anitha</creator><creator>Pamer, Eric G.</creator><creator>Eren, A. Murat</creator><creator>Light, Samuel H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2365-8828</orcidid><orcidid>https://orcid.org/0000-0003-1740-6472</orcidid><orcidid>https://orcid.org/0000-0002-2556-1707</orcidid><orcidid>https://orcid.org/0000-0002-8435-3203</orcidid><orcidid>https://orcid.org/0000-0002-4847-426X</orcidid><orcidid>https://orcid.org/0000-0002-7022-9068</orcidid><orcidid>https://orcid.org/0000-0002-8074-1348</orcidid><orcidid>https://orcid.org/0000-0002-6755-9904</orcidid><orcidid>https://orcid.org/0000-0001-7448-6574</orcidid><orcidid>https://orcid.org/0000-0002-2884-4307</orcidid><orcidid>https://orcid.org/0000-0001-9013-4827</orcidid><orcidid>https://orcid.org/0000-0002-7546-5019</orcidid><orcidid>https://orcid.org/0000-0002-8327-1935</orcidid></search><sort><creationdate>20240101</creationdate><title>Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration</title><author>Little, Alexander S. ; Younker, Isaac T. ; Schechter, Matthew S. ; Bernardino, Paola Nol ; Méheust, Raphaël ; Stemczynski, Joshua ; Scorza, Kaylie ; Mullowney, Michael W. ; Sharan, Deepti ; Waligurski, Emily ; Smith, Rita ; Ramanswamy, Ramanujam ; Leiter, William ; Moran, David ; McMillin, Mary ; Odenwald, Matthew A. ; Iavarone, Anthony T. ; Sidebottom, Ashley M. ; Sundararajan, Anitha ; Pamer, Eric G. ; Eren, A. Murat ; Light, Samuel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-1db9d497bcc63b944060943dd648eeea5c55b8f05f523480f5e4c562938c03db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/39</topic><topic>45/43</topic><topic>631/326/1320</topic><topic>631/326/2565/2134</topic><topic>631/45/320</topic><topic>631/45/607/1168</topic><topic>64/60</topic><topic>82/58</topic><topic>82/80</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobic respiration</topic><topic>Anaerobiosis</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Ecosystem</topic><topic>Energy metabolism</topic><topic>Genomes</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Parasitology</topic><topic>Respiration</topic><topic>Resveratrol</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Little, Alexander S.</creatorcontrib><creatorcontrib>Younker, Isaac T.</creatorcontrib><creatorcontrib>Schechter, Matthew S.</creatorcontrib><creatorcontrib>Bernardino, Paola Nol</creatorcontrib><creatorcontrib>Méheust, Raphaël</creatorcontrib><creatorcontrib>Stemczynski, Joshua</creatorcontrib><creatorcontrib>Scorza, Kaylie</creatorcontrib><creatorcontrib>Mullowney, Michael W.</creatorcontrib><creatorcontrib>Sharan, Deepti</creatorcontrib><creatorcontrib>Waligurski, Emily</creatorcontrib><creatorcontrib>Smith, Rita</creatorcontrib><creatorcontrib>Ramanswamy, Ramanujam</creatorcontrib><creatorcontrib>Leiter, William</creatorcontrib><creatorcontrib>Moran, David</creatorcontrib><creatorcontrib>McMillin, Mary</creatorcontrib><creatorcontrib>Odenwald, Matthew A.</creatorcontrib><creatorcontrib>Iavarone, Anthony T.</creatorcontrib><creatorcontrib>Sidebottom, Ashley M.</creatorcontrib><creatorcontrib>Sundararajan, Anitha</creatorcontrib><creatorcontrib>Pamer, Eric G.</creatorcontrib><creatorcontrib>Eren, A. Murat</creatorcontrib><creatorcontrib>Light, Samuel H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Little, Alexander S.</au><au>Younker, Isaac T.</au><au>Schechter, Matthew S.</au><au>Bernardino, Paola Nol</au><au>Méheust, Raphaël</au><au>Stemczynski, Joshua</au><au>Scorza, Kaylie</au><au>Mullowney, Michael W.</au><au>Sharan, Deepti</au><au>Waligurski, Emily</au><au>Smith, Rita</au><au>Ramanswamy, Ramanujam</au><au>Leiter, William</au><au>Moran, David</au><au>McMillin, Mary</au><au>Odenwald, Matthew A.</au><au>Iavarone, Anthony T.</au><au>Sidebottom, Ashley M.</au><au>Sundararajan, Anitha</au><au>Pamer, Eric G.</au><au>Eren, A. Murat</au><au>Light, Samuel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>55</spage><epage>69</epage><pages>55-69</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family ( Sutterella wadsworthensis , Eggerthella lenta and Holdemania filiformis ), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme–substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome. Three distinct families of gut bacteria encode an unprecedented number of respiratory-like reductases per genome to perform anaerobic respiration of biomedically relevant substrates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38177297</pmid><doi>10.1038/s41564-023-01560-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2365-8828</orcidid><orcidid>https://orcid.org/0000-0003-1740-6472</orcidid><orcidid>https://orcid.org/0000-0002-2556-1707</orcidid><orcidid>https://orcid.org/0000-0002-8435-3203</orcidid><orcidid>https://orcid.org/0000-0002-4847-426X</orcidid><orcidid>https://orcid.org/0000-0002-7022-9068</orcidid><orcidid>https://orcid.org/0000-0002-8074-1348</orcidid><orcidid>https://orcid.org/0000-0002-6755-9904</orcidid><orcidid>https://orcid.org/0000-0001-7448-6574</orcidid><orcidid>https://orcid.org/0000-0002-2884-4307</orcidid><orcidid>https://orcid.org/0000-0001-9013-4827</orcidid><orcidid>https://orcid.org/0000-0002-7546-5019</orcidid><orcidid>https://orcid.org/0000-0002-8327-1935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-5276
ispartof Nature microbiology, 2024-01, Vol.9 (1), p.55-69
issn 2058-5276
2058-5276
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11055453
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 38/39
45/43
631/326/1320
631/326/2565/2134
631/45/320
631/45/607/1168
64/60
82/58
82/80
Anaerobic microorganisms
Anaerobic respiration
Anaerobiosis
Bacteria
Bacteria - genetics
Bacteria - metabolism
Biomedical and Life Sciences
Ecosystem
Energy metabolism
Genomes
Humans
Infectious Diseases
Life Sciences
Medical Microbiology
Metabolites
Microbiology
Oxidoreductases - genetics
Oxidoreductases - metabolism
Parasitology
Respiration
Resveratrol
Virology
title Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dietary-%20and%20host-derived%20metabolites%20are%20used%20by%20diverse%20gut%20bacteria%20for%20anaerobic%20respiration&rft.jtitle=Nature%20microbiology&rft.au=Little,%20Alexander%20S.&rft.date=2024-01-01&rft.volume=9&rft.issue=1&rft.spage=55&rft.epage=69&rft.pages=55-69&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-023-01560-2&rft_dat=%3Cproquest_pubme%3E2910733235%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910733235&rft_id=info:pmid/38177297&rfr_iscdi=true