Multi-Layer Polyurethane-Fiber-Prepared Entangled Strain Sensor with Tunable Sensitivity and Working Range for Human Motion Detection

The entanglement of fibers can form physical and topological structures, with the resulting bending and stretching strains causing localized changes in pressure. In this study, a multi-layer polyurethane-fiber-prepared (MPF) sensor was developed by coating the CNT/PU sensing layer on the outside of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-04, Vol.16 (8), p.1023
Hauptverfasser: Zhong, Weibing, Wang, Daiqing, Ke, Yiming, Ming, Xiaojuan, Jiang, Haiqing, Li, Jiale, Li, Mufang, Chen, Qianqian, Wang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The entanglement of fibers can form physical and topological structures, with the resulting bending and stretching strains causing localized changes in pressure. In this study, a multi-layer polyurethane-fiber-prepared (MPF) sensor was developed by coating the CNT/PU sensing layer on the outside of an elastic electrode through a wet-film method. The entangled topology of two MPFs was utilized to convert the stretching strain into localized pressure at the contact area, enabling the perception of stretching strain. The influence of coating mechanical properties and surface structure on strain sensing performance was investigated. A force regulator was introduced to regulate the mechanical properties of the entangled topology of MPF. By modifying the thickness and length proportion of the force regulator, the sensitivity factor and sensitivity range of the sensor could be controlled, achieving a high sensitivity factor of up to 127.74 and a sensitivity range of up to 58%. Eight sensors were integrated into a sensor array and integrated into a dance costume, successfully monitoring the multi-axis motion of the dancer's lumbar spine. This provides a new approach for wearable biomechanical sensors.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16081023