Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts
Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electros...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-04, Vol.14 (20), p.13719-13733 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13733 |
---|---|
container_issue | 20 |
container_start_page | 13719 |
container_title | RSC advances |
container_volume | 14 |
creator | Han, Qilin Wu, Zhiyao Zhou, Yu Lei, Yongxin Nie, Bingying Yang, Leilei Zhong, Wenbin Wang, Nannan Zhu, Yanqiu |
description | Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 μmol g−1 h−1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag–Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications. |
doi_str_mv | 10.1039/d4ra01985g |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11044907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053072792</sourcerecordid><originalsourceid>FETCH-LOGICAL-p308t-ba47dd3b39bfcda6cf584f40e99abeaa9d998e3e0b3fc0c5d2f01704bc186c063</originalsourceid><addsrcrecordid>eNpdkD1LxEAQhoMgKGrjL1iwsTmd_cjHVnIcfoFwzdnYhMlmcpcjtxt3N6Kdta3_0F9izrPRaWaYeXgY3iQ55XDBQerLWnkErot0uZccClDZRECmD5KTENYwVpZykfHD5GNqDHXkMbZ2yQx635JngXrcrpxl0bHKuRBZXBHrVy46gxG7t9gaNpsL5qkezA_Zk2-c36A1xFzDInmL_o2taJzcerA7arr8ev9ctHImFq-XT3bOdroQw3Gy32AX6OS3HyWPN9eL2d3kYX57P5s-THoJRZxUqPK6lpXUVWNqzEyTFqpRQFpjRYi61rogSVDJxoBJa9EAz0FVhheZgUweJVc7bz9UG6oN2eixK3vfbsZ_S4dt-fdi21W5dC8l56CUhnw0nP8avHseKMRy04Yxxg4tuSGUElShtOJii579Q9duGIPptlQqIRe5FvIbpG-M0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053072792</pqid></control><display><type>article</type><title>Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Han, Qilin ; Wu, Zhiyao ; Zhou, Yu ; Lei, Yongxin ; Nie, Bingying ; Yang, Leilei ; Zhong, Wenbin ; Wang, Nannan ; Zhu, Yanqiu</creator><creatorcontrib>Han, Qilin ; Wu, Zhiyao ; Zhou, Yu ; Lei, Yongxin ; Nie, Bingying ; Yang, Leilei ; Zhong, Wenbin ; Wang, Nannan ; Zhu, Yanqiu</creatorcontrib><description>Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 μmol g−1 h−1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag–Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra01985g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Carbon dioxide ; Catalysts ; Chemistry ; Diffuse reflectance spectroscopy ; Electron transfer ; Fourier transforms ; Heterojunctions ; Infrared spectroscopy ; Methane ; Photocatalysis ; Photocatalysts ; Reaction mechanisms ; Self-assembly ; Spectrum analysis ; Valence band ; Zinc oxide</subject><ispartof>RSC advances, 2024-04, Vol.14 (20), p.13719-13733</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044907/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044907/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Han, Qilin</creatorcontrib><creatorcontrib>Wu, Zhiyao</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Lei, Yongxin</creatorcontrib><creatorcontrib>Nie, Bingying</creatorcontrib><creatorcontrib>Yang, Leilei</creatorcontrib><creatorcontrib>Zhong, Wenbin</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Zhu, Yanqiu</creatorcontrib><title>Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts</title><title>RSC advances</title><description>Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 μmol g−1 h−1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag–Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Electron transfer</subject><subject>Fourier transforms</subject><subject>Heterojunctions</subject><subject>Infrared spectroscopy</subject><subject>Methane</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Reaction mechanisms</subject><subject>Self-assembly</subject><subject>Spectrum analysis</subject><subject>Valence band</subject><subject>Zinc oxide</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkD1LxEAQhoMgKGrjL1iwsTmd_cjHVnIcfoFwzdnYhMlmcpcjtxt3N6Kdta3_0F9izrPRaWaYeXgY3iQ55XDBQerLWnkErot0uZccClDZRECmD5KTENYwVpZykfHD5GNqDHXkMbZ2yQx635JngXrcrpxl0bHKuRBZXBHrVy46gxG7t9gaNpsL5qkezA_Zk2-c36A1xFzDInmL_o2taJzcerA7arr8ev9ctHImFq-XT3bOdroQw3Gy32AX6OS3HyWPN9eL2d3kYX57P5s-THoJRZxUqPK6lpXUVWNqzEyTFqpRQFpjRYi61rogSVDJxoBJa9EAz0FVhheZgUweJVc7bz9UG6oN2eixK3vfbsZ_S4dt-fdi21W5dC8l56CUhnw0nP8avHseKMRy04Yxxg4tuSGUElShtOJii579Q9duGIPptlQqIRe5FvIbpG-M0w</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Han, Qilin</creator><creator>Wu, Zhiyao</creator><creator>Zhou, Yu</creator><creator>Lei, Yongxin</creator><creator>Nie, Bingying</creator><creator>Yang, Leilei</creator><creator>Zhong, Wenbin</creator><creator>Wang, Nannan</creator><creator>Zhu, Yanqiu</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240425</creationdate><title>Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts</title><author>Han, Qilin ; Wu, Zhiyao ; Zhou, Yu ; Lei, Yongxin ; Nie, Bingying ; Yang, Leilei ; Zhong, Wenbin ; Wang, Nannan ; Zhu, Yanqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p308t-ba47dd3b39bfcda6cf584f40e99abeaa9d998e3e0b3fc0c5d2f01704bc186c063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Electron transfer</topic><topic>Fourier transforms</topic><topic>Heterojunctions</topic><topic>Infrared spectroscopy</topic><topic>Methane</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Reaction mechanisms</topic><topic>Self-assembly</topic><topic>Spectrum analysis</topic><topic>Valence band</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Qilin</creatorcontrib><creatorcontrib>Wu, Zhiyao</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Lei, Yongxin</creatorcontrib><creatorcontrib>Nie, Bingying</creatorcontrib><creatorcontrib>Yang, Leilei</creatorcontrib><creatorcontrib>Zhong, Wenbin</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Zhu, Yanqiu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Qilin</au><au>Wu, Zhiyao</au><au>Zhou, Yu</au><au>Lei, Yongxin</au><au>Nie, Bingying</au><au>Yang, Leilei</au><au>Zhong, Wenbin</au><au>Wang, Nannan</au><au>Zhu, Yanqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts</atitle><jtitle>RSC advances</jtitle><date>2024-04-25</date><risdate>2024</risdate><volume>14</volume><issue>20</issue><spage>13719</spage><epage>13733</epage><pages>13719-13733</pages><eissn>2046-2069</eissn><abstract>Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 μmol g−1 h−1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag–Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra01985g</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2024-04, Vol.14 (20), p.13719-13733 |
issn | 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11044907 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adsorption Carbon dioxide Catalysts Chemistry Diffuse reflectance spectroscopy Electron transfer Fourier transforms Heterojunctions Infrared spectroscopy Methane Photocatalysis Photocatalysts Reaction mechanisms Self-assembly Spectrum analysis Valence band Zinc oxide |
title | Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20carrier%20separation%20to%20boost%20the%20photocatalytic%20CO2%20reduction%20performance%20of%20ternary%20heterojunction%20Ag%E2%80%93Ti3C2Tx/ZnO%20catalysts&rft.jtitle=RSC%20advances&rft.au=Han,%20Qilin&rft.date=2024-04-25&rft.volume=14&rft.issue=20&rft.spage=13719&rft.epage=13733&rft.pages=13719-13733&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra01985g&rft_dat=%3Cproquest_pubme%3E3053072792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053072792&rft_id=info:pmid/&rfr_iscdi=true |