Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts

Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-04, Vol.14 (20), p.13719-13733
Hauptverfasser: Han, Qilin, Wu, Zhiyao, Zhou, Yu, Lei, Yongxin, Nie, Bingying, Yang, Leilei, Zhong, Wenbin, Wang, Nannan, Zhu, Yanqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13733
container_issue 20
container_start_page 13719
container_title RSC advances
container_volume 14
creator Han, Qilin
Wu, Zhiyao
Zhou, Yu
Lei, Yongxin
Nie, Bingying
Yang, Leilei
Zhong, Wenbin
Wang, Nannan
Zhu, Yanqiu
description Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 μmol g−1 h−1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag–Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.
doi_str_mv 10.1039/d4ra01985g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11044907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053072792</sourcerecordid><originalsourceid>FETCH-LOGICAL-p308t-ba47dd3b39bfcda6cf584f40e99abeaa9d998e3e0b3fc0c5d2f01704bc186c063</originalsourceid><addsrcrecordid>eNpdkD1LxEAQhoMgKGrjL1iwsTmd_cjHVnIcfoFwzdnYhMlmcpcjtxt3N6Kdta3_0F9izrPRaWaYeXgY3iQ55XDBQerLWnkErot0uZccClDZRECmD5KTENYwVpZykfHD5GNqDHXkMbZ2yQx635JngXrcrpxl0bHKuRBZXBHrVy46gxG7t9gaNpsL5qkezA_Zk2-c36A1xFzDInmL_o2taJzcerA7arr8ev9ctHImFq-XT3bOdroQw3Gy32AX6OS3HyWPN9eL2d3kYX57P5s-THoJRZxUqPK6lpXUVWNqzEyTFqpRQFpjRYi61rogSVDJxoBJa9EAz0FVhheZgUweJVc7bz9UG6oN2eixK3vfbsZ_S4dt-fdi21W5dC8l56CUhnw0nP8avHseKMRy04Yxxg4tuSGUElShtOJii579Q9duGIPptlQqIRe5FvIbpG-M0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053072792</pqid></control><display><type>article</type><title>Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Han, Qilin ; Wu, Zhiyao ; Zhou, Yu ; Lei, Yongxin ; Nie, Bingying ; Yang, Leilei ; Zhong, Wenbin ; Wang, Nannan ; Zhu, Yanqiu</creator><creatorcontrib>Han, Qilin ; Wu, Zhiyao ; Zhou, Yu ; Lei, Yongxin ; Nie, Bingying ; Yang, Leilei ; Zhong, Wenbin ; Wang, Nannan ; Zhu, Yanqiu</creatorcontrib><description>Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 μmol g−1 h−1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag–Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra01985g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Carbon dioxide ; Catalysts ; Chemistry ; Diffuse reflectance spectroscopy ; Electron transfer ; Fourier transforms ; Heterojunctions ; Infrared spectroscopy ; Methane ; Photocatalysis ; Photocatalysts ; Reaction mechanisms ; Self-assembly ; Spectrum analysis ; Valence band ; Zinc oxide</subject><ispartof>RSC advances, 2024-04, Vol.14 (20), p.13719-13733</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044907/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044907/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Han, Qilin</creatorcontrib><creatorcontrib>Wu, Zhiyao</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Lei, Yongxin</creatorcontrib><creatorcontrib>Nie, Bingying</creatorcontrib><creatorcontrib>Yang, Leilei</creatorcontrib><creatorcontrib>Zhong, Wenbin</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Zhu, Yanqiu</creatorcontrib><title>Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts</title><title>RSC advances</title><description>Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 μmol g−1 h−1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag–Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Electron transfer</subject><subject>Fourier transforms</subject><subject>Heterojunctions</subject><subject>Infrared spectroscopy</subject><subject>Methane</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Reaction mechanisms</subject><subject>Self-assembly</subject><subject>Spectrum analysis</subject><subject>Valence band</subject><subject>Zinc oxide</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkD1LxEAQhoMgKGrjL1iwsTmd_cjHVnIcfoFwzdnYhMlmcpcjtxt3N6Kdta3_0F9izrPRaWaYeXgY3iQ55XDBQerLWnkErot0uZccClDZRECmD5KTENYwVpZykfHD5GNqDHXkMbZ2yQx635JngXrcrpxl0bHKuRBZXBHrVy46gxG7t9gaNpsL5qkezA_Zk2-c36A1xFzDInmL_o2taJzcerA7arr8ev9ctHImFq-XT3bOdroQw3Gy32AX6OS3HyWPN9eL2d3kYX57P5s-THoJRZxUqPK6lpXUVWNqzEyTFqpRQFpjRYi61rogSVDJxoBJa9EAz0FVhheZgUweJVc7bz9UG6oN2eixK3vfbsZ_S4dt-fdi21W5dC8l56CUhnw0nP8avHseKMRy04Yxxg4tuSGUElShtOJii579Q9duGIPptlQqIRe5FvIbpG-M0w</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Han, Qilin</creator><creator>Wu, Zhiyao</creator><creator>Zhou, Yu</creator><creator>Lei, Yongxin</creator><creator>Nie, Bingying</creator><creator>Yang, Leilei</creator><creator>Zhong, Wenbin</creator><creator>Wang, Nannan</creator><creator>Zhu, Yanqiu</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240425</creationdate><title>Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts</title><author>Han, Qilin ; Wu, Zhiyao ; Zhou, Yu ; Lei, Yongxin ; Nie, Bingying ; Yang, Leilei ; Zhong, Wenbin ; Wang, Nannan ; Zhu, Yanqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p308t-ba47dd3b39bfcda6cf584f40e99abeaa9d998e3e0b3fc0c5d2f01704bc186c063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Electron transfer</topic><topic>Fourier transforms</topic><topic>Heterojunctions</topic><topic>Infrared spectroscopy</topic><topic>Methane</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Reaction mechanisms</topic><topic>Self-assembly</topic><topic>Spectrum analysis</topic><topic>Valence band</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Qilin</creatorcontrib><creatorcontrib>Wu, Zhiyao</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Lei, Yongxin</creatorcontrib><creatorcontrib>Nie, Bingying</creatorcontrib><creatorcontrib>Yang, Leilei</creatorcontrib><creatorcontrib>Zhong, Wenbin</creatorcontrib><creatorcontrib>Wang, Nannan</creatorcontrib><creatorcontrib>Zhu, Yanqiu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Qilin</au><au>Wu, Zhiyao</au><au>Zhou, Yu</au><au>Lei, Yongxin</au><au>Nie, Bingying</au><au>Yang, Leilei</au><au>Zhong, Wenbin</au><au>Wang, Nannan</au><au>Zhu, Yanqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts</atitle><jtitle>RSC advances</jtitle><date>2024-04-25</date><risdate>2024</risdate><volume>14</volume><issue>20</issue><spage>13719</spage><epage>13733</epage><pages>13719-13733</pages><eissn>2046-2069</eissn><abstract>Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag–Ti3C2Tx composites were made using a self-reduction technique, and unique Ag–Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 μmol g−1 h−1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag–Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra01985g</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2024-04, Vol.14 (20), p.13719-13733
issn 2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11044907
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adsorption
Carbon dioxide
Catalysts
Chemistry
Diffuse reflectance spectroscopy
Electron transfer
Fourier transforms
Heterojunctions
Infrared spectroscopy
Methane
Photocatalysis
Photocatalysts
Reaction mechanisms
Self-assembly
Spectrum analysis
Valence band
Zinc oxide
title Accelerating carrier separation to boost the photocatalytic CO2 reduction performance of ternary heterojunction Ag–Ti3C2Tx/ZnO catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20carrier%20separation%20to%20boost%20the%20photocatalytic%20CO2%20reduction%20performance%20of%20ternary%20heterojunction%20Ag%E2%80%93Ti3C2Tx/ZnO%20catalysts&rft.jtitle=RSC%20advances&rft.au=Han,%20Qilin&rft.date=2024-04-25&rft.volume=14&rft.issue=20&rft.spage=13719&rft.epage=13733&rft.pages=13719-13733&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra01985g&rft_dat=%3Cproquest_pubme%3E3053072792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053072792&rft_id=info:pmid/&rfr_iscdi=true