Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction
To better understand the molecular basis of the defense response against the rice blast fungus (Magnaporthe grisea), a large-scale expressed sequence tag (EST) sequencing approach was used to identify genes involved in the early infection stages in rice (Oryza sativa). Six cDNA libraries were constr...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2005-05, Vol.138 (1), p.105-115 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | Plant physiology (Bethesda) |
container_volume | 138 |
creator | Jantasuriyarat, Chatchawan Gowda, Malali Haller, Karl Hatfield, Jamie Lu, Guodong Stahlberg, Eric Zhou, Bo Li, Huameng Kim, HyRan Yu, Yeisoo Dean, Ralph A Wing, Rod A Soderlund, Carol Wang, Guo-Liang |
description | To better understand the molecular basis of the defense response against the rice blast fungus (Magnaporthe grisea), a large-scale expressed sequence tag (EST) sequencing approach was used to identify genes involved in the early infection stages in rice (Oryza sativa). Six cDNA libraries were constructed using infected leaf tissues harvested from 6 conditions: resistant, partially resistant, and susceptible reactions at both 6 and 24 h after inoculation. Two additional libraries were constructed using uninoculated leaves and leaves from the lesion mimic mutant spl11. A total of 68,920 ESTs were generated from 8 libraries. Clustering and assembly analyses resulted in 13,570 unique sequences from 10,934 contigs and 2,636 singletons. Gene function classification showed that 42% of the ESTs were predicted to have putative gene function. Comparison of the pathogen-challenged libraries with the uninoculated control library revealed an increase in the percentage of genes in the functional categories of defense and signal transduction mechanisms and cell cycle control, cell division, and chromosome partitioning. In addition, hierarchical clustering analysis grouped the eight libraries based on their disease reactions. A total of 7,748 new and unique ESTs were identified from our collection compared with the KOME full-length cDNA collection. Interestingly, we found that rice ESTs are more closely related to sorghum (Sorghum bicolor) ESTs than to barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays) ESTs. The large cataloged collection of rice ESTs in this study provides a solid foundation for further characterization of the rice defense response and is a useful public genomic resource for rice functional genomics studies. |
doi_str_mv | 10.1104/pp.104.055624 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1104166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4629808</jstor_id><sourcerecordid>4629808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-6cf9ae6200d1bdc29c73aead1fe12be2f9e6a573f5d977464f136b6c58f36d2e3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EokvhyA1BLnDL4o_YsS-VoGphpZWQ2PZszTp26irrBDtZwb_HIasWTpxmNO-j1_NhhF4TvCYEVx-HYZ3DGnMuaPUErQhntKS8kk_RCuOcYynVGXqR0j3GmDBSPUdnhEsphWQrdLeF2NpyZ6CzxaaxYfTOGxh9H4reFVc_h2hTsk2xsz8mG4wtbqBNxSYc--6Yyz4U332uQmiW5HMHaSyup9BOMzbaCGZ2e4meOeiSfXWK5-j2-urm8mu5_fZlc_lpWxqu2FgK4xRYQTFuyL4xVJmagYWGOEvo3lKnrABeM8cbVdeVqBxhYi8Ml46Jhlp2ji4W32HaH2xj8kQROj1Ef4D4S_fg9b9K8He67Y963iYRIht8OBnEPo-cRn3wydiug2D7KWlRy7xeof4LEiWx5JRlsFxAE_uUonUP3RD851k9DHoOyxEz__bvER7p09Uy8P4EQMqHcxGC8emRE3WtOMGZe7Nw92ns44NeCTq3luV3i-yg19DGbHG7o_mPYKyU4LRmvwHOsrkO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19808523</pqid></control><display><type>article</type><title>Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>Jantasuriyarat, Chatchawan ; Gowda, Malali ; Haller, Karl ; Hatfield, Jamie ; Lu, Guodong ; Stahlberg, Eric ; Zhou, Bo ; Li, Huameng ; Kim, HyRan ; Yu, Yeisoo ; Dean, Ralph A ; Wing, Rod A ; Soderlund, Carol ; Wang, Guo-Liang</creator><creatorcontrib>Jantasuriyarat, Chatchawan ; Gowda, Malali ; Haller, Karl ; Hatfield, Jamie ; Lu, Guodong ; Stahlberg, Eric ; Zhou, Bo ; Li, Huameng ; Kim, HyRan ; Yu, Yeisoo ; Dean, Ralph A ; Wing, Rod A ; Soderlund, Carol ; Wang, Guo-Liang</creatorcontrib><description>To better understand the molecular basis of the defense response against the rice blast fungus (Magnaporthe grisea), a large-scale expressed sequence tag (EST) sequencing approach was used to identify genes involved in the early infection stages in rice (Oryza sativa). Six cDNA libraries were constructed using infected leaf tissues harvested from 6 conditions: resistant, partially resistant, and susceptible reactions at both 6 and 24 h after inoculation. Two additional libraries were constructed using uninoculated leaves and leaves from the lesion mimic mutant spl11. A total of 68,920 ESTs were generated from 8 libraries. Clustering and assembly analyses resulted in 13,570 unique sequences from 10,934 contigs and 2,636 singletons. Gene function classification showed that 42% of the ESTs were predicted to have putative gene function. Comparison of the pathogen-challenged libraries with the uninoculated control library revealed an increase in the percentage of genes in the functional categories of defense and signal transduction mechanisms and cell cycle control, cell division, and chromosome partitioning. In addition, hierarchical clustering analysis grouped the eight libraries based on their disease reactions. A total of 7,748 new and unique ESTs were identified from our collection compared with the KOME full-length cDNA collection. Interestingly, we found that rice ESTs are more closely related to sorghum (Sorghum bicolor) ESTs than to barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays) ESTs. The large cataloged collection of rice ESTs in this study provides a solid foundation for further characterization of the rice defense response and is a useful public genomic resource for rice functional genomics studies.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.104.055624</identifier><identifier>PMID: 15888683</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Biological and medical sciences ; blast disease ; Blasts ; CDNA libraries ; Complementary DNA ; disease resistance ; Disease Susceptibility ; DNA libraries ; Expressed Sequence Tags ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - genetics ; Fungi ; gene expression regulation ; Gene Library ; Genes ; Genes, Plant ; Genes. Genome ; Genome Analysis ; grain crops ; Hordeum vulgare ; host plants ; host-pathogen relationships ; Immunity, Innate ; Inoculation ; Libraries ; Magnaporthe - genetics ; Magnaporthe - pathogenicity ; Magnaporthe grisea ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Northern blotting ; nucleotide sequences ; Oryza - genetics ; Oryza - microbiology ; Oryza sativa ; Plant Diseases - genetics ; plant genetics ; Plant Leaves - microbiology ; plant pathogenic fungi ; Plant Proteins - genetics ; Rice ; Sequencing ; Sorghum ; Sorghum bicolor ; staple foods ; Triticum aestivum ; Zea mays</subject><ispartof>Plant physiology (Bethesda), 2005-05, Vol.138 (1), p.105-115</ispartof><rights>Copyright 2005 American Society of Plant Biologists</rights><rights>2005 INIST-CNRS</rights><rights>Copyright © 2005, American Society of Plant Biologists 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-6cf9ae6200d1bdc29c73aead1fe12be2f9e6a573f5d977464f136b6c58f36d2e3</citedby><cites>FETCH-LOGICAL-c593t-6cf9ae6200d1bdc29c73aead1fe12be2f9e6a573f5d977464f136b6c58f36d2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4629808$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4629808$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16779510$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15888683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jantasuriyarat, Chatchawan</creatorcontrib><creatorcontrib>Gowda, Malali</creatorcontrib><creatorcontrib>Haller, Karl</creatorcontrib><creatorcontrib>Hatfield, Jamie</creatorcontrib><creatorcontrib>Lu, Guodong</creatorcontrib><creatorcontrib>Stahlberg, Eric</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Li, Huameng</creatorcontrib><creatorcontrib>Kim, HyRan</creatorcontrib><creatorcontrib>Yu, Yeisoo</creatorcontrib><creatorcontrib>Dean, Ralph A</creatorcontrib><creatorcontrib>Wing, Rod A</creatorcontrib><creatorcontrib>Soderlund, Carol</creatorcontrib><creatorcontrib>Wang, Guo-Liang</creatorcontrib><title>Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>To better understand the molecular basis of the defense response against the rice blast fungus (Magnaporthe grisea), a large-scale expressed sequence tag (EST) sequencing approach was used to identify genes involved in the early infection stages in rice (Oryza sativa). Six cDNA libraries were constructed using infected leaf tissues harvested from 6 conditions: resistant, partially resistant, and susceptible reactions at both 6 and 24 h after inoculation. Two additional libraries were constructed using uninoculated leaves and leaves from the lesion mimic mutant spl11. A total of 68,920 ESTs were generated from 8 libraries. Clustering and assembly analyses resulted in 13,570 unique sequences from 10,934 contigs and 2,636 singletons. Gene function classification showed that 42% of the ESTs were predicted to have putative gene function. Comparison of the pathogen-challenged libraries with the uninoculated control library revealed an increase in the percentage of genes in the functional categories of defense and signal transduction mechanisms and cell cycle control, cell division, and chromosome partitioning. In addition, hierarchical clustering analysis grouped the eight libraries based on their disease reactions. A total of 7,748 new and unique ESTs were identified from our collection compared with the KOME full-length cDNA collection. Interestingly, we found that rice ESTs are more closely related to sorghum (Sorghum bicolor) ESTs than to barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays) ESTs. The large cataloged collection of rice ESTs in this study provides a solid foundation for further characterization of the rice defense response and is a useful public genomic resource for rice functional genomics studies.</description><subject>Biological and medical sciences</subject><subject>blast disease</subject><subject>Blasts</subject><subject>CDNA libraries</subject><subject>Complementary DNA</subject><subject>disease resistance</subject><subject>Disease Susceptibility</subject><subject>DNA libraries</subject><subject>Expressed Sequence Tags</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - genetics</subject><subject>Fungi</subject><subject>gene expression regulation</subject><subject>Gene Library</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genes. Genome</subject><subject>Genome Analysis</subject><subject>grain crops</subject><subject>Hordeum vulgare</subject><subject>host plants</subject><subject>host-pathogen relationships</subject><subject>Immunity, Innate</subject><subject>Inoculation</subject><subject>Libraries</subject><subject>Magnaporthe - genetics</subject><subject>Magnaporthe - pathogenicity</subject><subject>Magnaporthe grisea</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Northern blotting</subject><subject>nucleotide sequences</subject><subject>Oryza - genetics</subject><subject>Oryza - microbiology</subject><subject>Oryza sativa</subject><subject>Plant Diseases - genetics</subject><subject>plant genetics</subject><subject>Plant Leaves - microbiology</subject><subject>plant pathogenic fungi</subject><subject>Plant Proteins - genetics</subject><subject>Rice</subject><subject>Sequencing</subject><subject>Sorghum</subject><subject>Sorghum bicolor</subject><subject>staple foods</subject><subject>Triticum aestivum</subject><subject>Zea mays</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EokvhyA1BLnDL4o_YsS-VoGphpZWQ2PZszTp26irrBDtZwb_HIasWTpxmNO-j1_NhhF4TvCYEVx-HYZ3DGnMuaPUErQhntKS8kk_RCuOcYynVGXqR0j3GmDBSPUdnhEsphWQrdLeF2NpyZ6CzxaaxYfTOGxh9H4reFVc_h2hTsk2xsz8mG4wtbqBNxSYc--6Yyz4U332uQmiW5HMHaSyup9BOMzbaCGZ2e4meOeiSfXWK5-j2-urm8mu5_fZlc_lpWxqu2FgK4xRYQTFuyL4xVJmagYWGOEvo3lKnrABeM8cbVdeVqBxhYi8Ml46Jhlp2ji4W32HaH2xj8kQROj1Ef4D4S_fg9b9K8He67Y963iYRIht8OBnEPo-cRn3wydiug2D7KWlRy7xeof4LEiWx5JRlsFxAE_uUonUP3RD851k9DHoOyxEz__bvER7p09Uy8P4EQMqHcxGC8emRE3WtOMGZe7Nw92ns44NeCTq3luV3i-yg19DGbHG7o_mPYKyU4LRmvwHOsrkO</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Jantasuriyarat, Chatchawan</creator><creator>Gowda, Malali</creator><creator>Haller, Karl</creator><creator>Hatfield, Jamie</creator><creator>Lu, Guodong</creator><creator>Stahlberg, Eric</creator><creator>Zhou, Bo</creator><creator>Li, Huameng</creator><creator>Kim, HyRan</creator><creator>Yu, Yeisoo</creator><creator>Dean, Ralph A</creator><creator>Wing, Rod A</creator><creator>Soderlund, Carol</creator><creator>Wang, Guo-Liang</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050501</creationdate><title>Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction</title><author>Jantasuriyarat, Chatchawan ; Gowda, Malali ; Haller, Karl ; Hatfield, Jamie ; Lu, Guodong ; Stahlberg, Eric ; Zhou, Bo ; Li, Huameng ; Kim, HyRan ; Yu, Yeisoo ; Dean, Ralph A ; Wing, Rod A ; Soderlund, Carol ; Wang, Guo-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-6cf9ae6200d1bdc29c73aead1fe12be2f9e6a573f5d977464f136b6c58f36d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>blast disease</topic><topic>Blasts</topic><topic>CDNA libraries</topic><topic>Complementary DNA</topic><topic>disease resistance</topic><topic>Disease Susceptibility</topic><topic>DNA libraries</topic><topic>Expressed Sequence Tags</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - genetics</topic><topic>Fungi</topic><topic>gene expression regulation</topic><topic>Gene Library</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genes. Genome</topic><topic>Genome Analysis</topic><topic>grain crops</topic><topic>Hordeum vulgare</topic><topic>host plants</topic><topic>host-pathogen relationships</topic><topic>Immunity, Innate</topic><topic>Inoculation</topic><topic>Libraries</topic><topic>Magnaporthe - genetics</topic><topic>Magnaporthe - pathogenicity</topic><topic>Magnaporthe grisea</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Northern blotting</topic><topic>nucleotide sequences</topic><topic>Oryza - genetics</topic><topic>Oryza - microbiology</topic><topic>Oryza sativa</topic><topic>Plant Diseases - genetics</topic><topic>plant genetics</topic><topic>Plant Leaves - microbiology</topic><topic>plant pathogenic fungi</topic><topic>Plant Proteins - genetics</topic><topic>Rice</topic><topic>Sequencing</topic><topic>Sorghum</topic><topic>Sorghum bicolor</topic><topic>staple foods</topic><topic>Triticum aestivum</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jantasuriyarat, Chatchawan</creatorcontrib><creatorcontrib>Gowda, Malali</creatorcontrib><creatorcontrib>Haller, Karl</creatorcontrib><creatorcontrib>Hatfield, Jamie</creatorcontrib><creatorcontrib>Lu, Guodong</creatorcontrib><creatorcontrib>Stahlberg, Eric</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Li, Huameng</creatorcontrib><creatorcontrib>Kim, HyRan</creatorcontrib><creatorcontrib>Yu, Yeisoo</creatorcontrib><creatorcontrib>Dean, Ralph A</creatorcontrib><creatorcontrib>Wing, Rod A</creatorcontrib><creatorcontrib>Soderlund, Carol</creatorcontrib><creatorcontrib>Wang, Guo-Liang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jantasuriyarat, Chatchawan</au><au>Gowda, Malali</au><au>Haller, Karl</au><au>Hatfield, Jamie</au><au>Lu, Guodong</au><au>Stahlberg, Eric</au><au>Zhou, Bo</au><au>Li, Huameng</au><au>Kim, HyRan</au><au>Yu, Yeisoo</au><au>Dean, Ralph A</au><au>Wing, Rod A</au><au>Soderlund, Carol</au><au>Wang, Guo-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>138</volume><issue>1</issue><spage>105</spage><epage>115</epage><pages>105-115</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>To better understand the molecular basis of the defense response against the rice blast fungus (Magnaporthe grisea), a large-scale expressed sequence tag (EST) sequencing approach was used to identify genes involved in the early infection stages in rice (Oryza sativa). Six cDNA libraries were constructed using infected leaf tissues harvested from 6 conditions: resistant, partially resistant, and susceptible reactions at both 6 and 24 h after inoculation. Two additional libraries were constructed using uninoculated leaves and leaves from the lesion mimic mutant spl11. A total of 68,920 ESTs were generated from 8 libraries. Clustering and assembly analyses resulted in 13,570 unique sequences from 10,934 contigs and 2,636 singletons. Gene function classification showed that 42% of the ESTs were predicted to have putative gene function. Comparison of the pathogen-challenged libraries with the uninoculated control library revealed an increase in the percentage of genes in the functional categories of defense and signal transduction mechanisms and cell cycle control, cell division, and chromosome partitioning. In addition, hierarchical clustering analysis grouped the eight libraries based on their disease reactions. A total of 7,748 new and unique ESTs were identified from our collection compared with the KOME full-length cDNA collection. Interestingly, we found that rice ESTs are more closely related to sorghum (Sorghum bicolor) ESTs than to barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays) ESTs. The large cataloged collection of rice ESTs in this study provides a solid foundation for further characterization of the rice defense response and is a useful public genomic resource for rice functional genomics studies.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>15888683</pmid><doi>10.1104/pp.104.055624</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2005-05, Vol.138 (1), p.105-115 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1104166 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; JSTOR |
subjects | Biological and medical sciences blast disease Blasts CDNA libraries Complementary DNA disease resistance Disease Susceptibility DNA libraries Expressed Sequence Tags Fundamental and applied biological sciences. Psychology Fungal Proteins - genetics Fungi gene expression regulation Gene Library Genes Genes, Plant Genes. Genome Genome Analysis grain crops Hordeum vulgare host plants host-pathogen relationships Immunity, Innate Inoculation Libraries Magnaporthe - genetics Magnaporthe - pathogenicity Magnaporthe grisea Molecular and cellular biology Molecular genetics Molecular Sequence Data Northern blotting nucleotide sequences Oryza - genetics Oryza - microbiology Oryza sativa Plant Diseases - genetics plant genetics Plant Leaves - microbiology plant pathogenic fungi Plant Proteins - genetics Rice Sequencing Sorghum Sorghum bicolor staple foods Triticum aestivum Zea mays |
title | Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Identification%20of%20Expressed%20Sequence%20Tags%20Involved%20in%20Rice%20and%20Rice%20Blast%20Fungus%20Interaction&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jantasuriyarat,%20Chatchawan&rft.date=2005-05-01&rft.volume=138&rft.issue=1&rft.spage=105&rft.epage=115&rft.pages=105-115&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.104.055624&rft_dat=%3Cjstor_pubme%3E4629808%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19808523&rft_id=info:pmid/15888683&rft_jstor_id=4629808&rfr_iscdi=true |