Structure-Based Protein Assembly Simulations Including Various Binding Sites and Conformations
Many biological functions are mediated by large complexes formed by multiple proteins and other cellular macromolecules. Recent progress in experimental structure determination, as well as in integrative modeling and protein structure prediction using deep learning approaches, has resulted in a rapi...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-04, Vol.64 (8), p.3465-3476 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3476 |
---|---|
container_issue | 8 |
container_start_page | 3465 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Walter, Luis J. Quoika, Patrick K. Zacharias, Martin |
description | Many biological functions are mediated by large complexes formed by multiple proteins and other cellular macromolecules. Recent progress in experimental structure determination, as well as in integrative modeling and protein structure prediction using deep learning approaches, has resulted in a rapid increase in the number of solved multiprotein assemblies. However, the assembly process of large complexes from their components is much less well-studied. We introduce a rapid computational structure-based (SB) model, GoCa, that allows to follow the assembly process of large multiprotein complexes based on a known native structure. Beyond existing SB Go̅-type models, it distinguishes between intra- and intersubunit interactions, allowing us to include coupled folding and binding. It accounts automatically for the permutation of identical subunits in a complex and allows the definition of multiple minima (native) structures in the case of proteins that undergo global transitions during assembly. The model is successfully tested on several multiprotein complexes. The source code of the GoCa program including a tutorial is publicly available on Github: https://github.com/ZachariasLab/GoCa. We also provide a web source that allows users to quickly generate the necessary input files for a GoCa simulation: https://goca.t38webservices.nat.tum.de. |
doi_str_mv | 10.1021/acs.jcim.4c00212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11040733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046823316</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-dbeffaa6567dd19b94ccbba85189f16491b6de59e9c534a6ce25b72b0e1bbd6c3</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVoSdI0-6yKoZsu6olkPWytSjL0EQg0MG3JKkKP61SDLSWSXci_r5KZCW2hK-mi75yrw0HohOAFwQ051TYv1taPC2ZxmZs9dEg4k7UU-PrF7s6lOECvcl5jTKkUzT46oJ3AjaTdIbpZTWm205ygPtcZXHWV4gQ-VGc5w2iGh2rlx3nQk48hVxfBDrPz4bb6oZOPc67OfXiaV36CXOngqmUMfUzjRvEavez1kOF4ex6h758-flt-qS-_fr5Ynl3WmhE-1c5A32stuGidI9JIZq0xuuOkkz0RTBIjHHAJ0nLKtLDQcNM2BgMxxglLj9CHje_dbEZwFsKU9KDukh91elBRe_X3S_A_1W38pQjBDLeUFod3W4cU72fIkxp9tjAMOkAJqiimHWOs5W1B3_6DruOcQslXKCa6hlIiCoU3lE0x5wT9828IVo_tqdKeemxPbdsrkjd_pngW7OoqwPsN8CTdLf2v32_Y_6kf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046823316</pqid></control><display><type>article</type><title>Structure-Based Protein Assembly Simulations Including Various Binding Sites and Conformations</title><source>MEDLINE</source><source>ACS Publications</source><creator>Walter, Luis J. ; Quoika, Patrick K. ; Zacharias, Martin</creator><creatorcontrib>Walter, Luis J. ; Quoika, Patrick K. ; Zacharias, Martin</creatorcontrib><description>Many biological functions are mediated by large complexes formed by multiple proteins and other cellular macromolecules. Recent progress in experimental structure determination, as well as in integrative modeling and protein structure prediction using deep learning approaches, has resulted in a rapid increase in the number of solved multiprotein assemblies. However, the assembly process of large complexes from their components is much less well-studied. We introduce a rapid computational structure-based (SB) model, GoCa, that allows to follow the assembly process of large multiprotein complexes based on a known native structure. Beyond existing SB Go̅-type models, it distinguishes between intra- and intersubunit interactions, allowing us to include coupled folding and binding. It accounts automatically for the permutation of identical subunits in a complex and allows the definition of multiple minima (native) structures in the case of proteins that undergo global transitions during assembly. The model is successfully tested on several multiprotein complexes. The source code of the GoCa program including a tutorial is publicly available on Github: https://github.com/ZachariasLab/GoCa. We also provide a web source that allows users to quickly generate the necessary input files for a GoCa simulation: https://goca.t38webservices.nat.tum.de.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c00212</identifier><identifier>PMID: 38602938</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Assembly ; Binding Sites ; Cellular structure ; Computational Biochemistry ; Models, Molecular ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Permutations ; Protein Conformation ; Proteins ; Proteins - chemistry ; Proteins - metabolism ; Software</subject><ispartof>Journal of chemical information and modeling, 2024-04, Vol.64 (8), p.3465-3476</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Apr 22, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a415t-dbeffaa6567dd19b94ccbba85189f16491b6de59e9c534a6ce25b72b0e1bbd6c3</cites><orcidid>0000-0002-6227-5443 ; 0000-0001-5163-2663 ; 0009-0000-0113-6215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00212$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c00212$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38602938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, Luis J.</creatorcontrib><creatorcontrib>Quoika, Patrick K.</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><title>Structure-Based Protein Assembly Simulations Including Various Binding Sites and Conformations</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Many biological functions are mediated by large complexes formed by multiple proteins and other cellular macromolecules. Recent progress in experimental structure determination, as well as in integrative modeling and protein structure prediction using deep learning approaches, has resulted in a rapid increase in the number of solved multiprotein assemblies. However, the assembly process of large complexes from their components is much less well-studied. We introduce a rapid computational structure-based (SB) model, GoCa, that allows to follow the assembly process of large multiprotein complexes based on a known native structure. Beyond existing SB Go̅-type models, it distinguishes between intra- and intersubunit interactions, allowing us to include coupled folding and binding. It accounts automatically for the permutation of identical subunits in a complex and allows the definition of multiple minima (native) structures in the case of proteins that undergo global transitions during assembly. The model is successfully tested on several multiprotein complexes. The source code of the GoCa program including a tutorial is publicly available on Github: https://github.com/ZachariasLab/GoCa. We also provide a web source that allows users to quickly generate the necessary input files for a GoCa simulation: https://goca.t38webservices.nat.tum.de.</description><subject>Assembly</subject><subject>Binding Sites</subject><subject>Cellular structure</subject><subject>Computational Biochemistry</subject><subject>Models, Molecular</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Permutations</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Software</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtr3DAUhUVoSdI0-6yKoZsu6olkPWytSjL0EQg0MG3JKkKP61SDLSWSXci_r5KZCW2hK-mi75yrw0HohOAFwQ051TYv1taPC2ZxmZs9dEg4k7UU-PrF7s6lOECvcl5jTKkUzT46oJ3AjaTdIbpZTWm205ygPtcZXHWV4gQ-VGc5w2iGh2rlx3nQk48hVxfBDrPz4bb6oZOPc67OfXiaV36CXOngqmUMfUzjRvEavez1kOF4ex6h758-flt-qS-_fr5Ynl3WmhE-1c5A32stuGidI9JIZq0xuuOkkz0RTBIjHHAJ0nLKtLDQcNM2BgMxxglLj9CHje_dbEZwFsKU9KDukh91elBRe_X3S_A_1W38pQjBDLeUFod3W4cU72fIkxp9tjAMOkAJqiimHWOs5W1B3_6DruOcQslXKCa6hlIiCoU3lE0x5wT9828IVo_tqdKeemxPbdsrkjd_pngW7OoqwPsN8CTdLf2v32_Y_6kf</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Walter, Luis J.</creator><creator>Quoika, Patrick K.</creator><creator>Zacharias, Martin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6227-5443</orcidid><orcidid>https://orcid.org/0000-0001-5163-2663</orcidid><orcidid>https://orcid.org/0009-0000-0113-6215</orcidid></search><sort><creationdate>20240422</creationdate><title>Structure-Based Protein Assembly Simulations Including Various Binding Sites and Conformations</title><author>Walter, Luis J. ; Quoika, Patrick K. ; Zacharias, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-dbeffaa6567dd19b94ccbba85189f16491b6de59e9c534a6ce25b72b0e1bbd6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>Binding Sites</topic><topic>Cellular structure</topic><topic>Computational Biochemistry</topic><topic>Models, Molecular</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Permutations</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Luis J.</creatorcontrib><creatorcontrib>Quoika, Patrick K.</creatorcontrib><creatorcontrib>Zacharias, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, Luis J.</au><au>Quoika, Patrick K.</au><au>Zacharias, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Based Protein Assembly Simulations Including Various Binding Sites and Conformations</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-04-22</date><risdate>2024</risdate><volume>64</volume><issue>8</issue><spage>3465</spage><epage>3476</epage><pages>3465-3476</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Many biological functions are mediated by large complexes formed by multiple proteins and other cellular macromolecules. Recent progress in experimental structure determination, as well as in integrative modeling and protein structure prediction using deep learning approaches, has resulted in a rapid increase in the number of solved multiprotein assemblies. However, the assembly process of large complexes from their components is much less well-studied. We introduce a rapid computational structure-based (SB) model, GoCa, that allows to follow the assembly process of large multiprotein complexes based on a known native structure. Beyond existing SB Go̅-type models, it distinguishes between intra- and intersubunit interactions, allowing us to include coupled folding and binding. It accounts automatically for the permutation of identical subunits in a complex and allows the definition of multiple minima (native) structures in the case of proteins that undergo global transitions during assembly. The model is successfully tested on several multiprotein complexes. The source code of the GoCa program including a tutorial is publicly available on Github: https://github.com/ZachariasLab/GoCa. We also provide a web source that allows users to quickly generate the necessary input files for a GoCa simulation: https://goca.t38webservices.nat.tum.de.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38602938</pmid><doi>10.1021/acs.jcim.4c00212</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6227-5443</orcidid><orcidid>https://orcid.org/0000-0001-5163-2663</orcidid><orcidid>https://orcid.org/0009-0000-0113-6215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-04, Vol.64 (8), p.3465-3476 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11040733 |
source | MEDLINE; ACS Publications |
subjects | Assembly Binding Sites Cellular structure Computational Biochemistry Models, Molecular Multiprotein Complexes - chemistry Multiprotein Complexes - metabolism Permutations Protein Conformation Proteins Proteins - chemistry Proteins - metabolism Software |
title | Structure-Based Protein Assembly Simulations Including Various Binding Sites and Conformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Based%20Protein%20Assembly%20Simulations%20Including%20Various%20Binding%20Sites%20and%20Conformations&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Walter,%20Luis%20J.&rft.date=2024-04-22&rft.volume=64&rft.issue=8&rft.spage=3465&rft.epage=3476&rft.pages=3465-3476&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c00212&rft_dat=%3Cproquest_pubme%3E3046823316%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046823316&rft_id=info:pmid/38602938&rfr_iscdi=true |