Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification

Graphene-based materials have great potential for applications in many fields, but their poor dispersion in polar solvents and chemical inertness require improvements. Low-temperature plasma allows the precise modification of materials, improving the physicochemical properties of the surface and thu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (15), p.19771-19779
Hauptverfasser: Kadela, Karolina, Grzybek, Gabriela, Kotarba, Andrzej, Stelmachowski, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19779
container_issue 15
container_start_page 19771
container_title ACS applied materials & interfaces
container_volume 16
creator Kadela, Karolina
Grzybek, Gabriela
Kotarba, Andrzej
Stelmachowski, Paweł
description Graphene-based materials have great potential for applications in many fields, but their poor dispersion in polar solvents and chemical inertness require improvements. Low-temperature plasma allows the precise modification of materials, improving the physicochemical properties of the surface and thus creating the possibility of their potential use. Plasma treatment offers the possibility of introducing oxygen functional groups simply, rapidly, and in a controlled way. In this work, a systematic investigation of the effect of plasma modification on graphene nanoplatelets has been carried out to determine the optimal plasma parameters, especially the exposure time, for introducing the highest amount of oxygen functional groups on a surface. Different gases (O2, CO2, air, Ar, and C2H4) were used for this purpose. The chemical nature of the introduced oxygen-containing functionalities was characterized by X-ray photoelectron spectroscopy, and the structural properties of the materials were studied by Raman spectroscopy. The plasma-induced changes have been shown to evolve as the surface functionalities observed after plasma treatment are unstable. The immersion of the materials in liquids was carried out to check the reactivity of carbons in postplasma reactions. Stabilization of the material’s surface after plasma treatment using CH3COOH was the most effective for introducing oxygen functional groups.
doi_str_mv 10.1021/acsami.4c01226
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11040526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034244246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-9f28bff4e3209bc96de1a34c12cf01b585f1e6afdd58ee2c91e987ca9d0417af3</originalsourceid><addsrcrecordid>eNqFkU1r3DAURUVpaNK02yyDl6Xgib7ssVelhDQJTNsQ0m7FG_lprGBLriQn5N9XYSZDuyhdSaDzDlfvEnLC6IJRzs5ARxjtQmrKOK9fkSPWSlk2vOKv93cpD8nbGO8prQWn1RtyKJpqWTWVOCI_L1wPTlu3KS4DTD06LL6B89MACQdMxS2CTvbBpqci9cHPm75Y-cfyDscJA6Q5YHEzQByh-Oo7a6yGZL17Rw4MDBHf785j8uPLxd35Vbn6fnl9_nlVgmQyla3hzdoYiTlXu9Zt3SEDITXj2lC2zhENwxpM11UNItctw7ZZamg7KtkSjDgmn7beaV6P2Gl0KcCgpmBHCE_Kg1V_vzjbq41_UIxRSSteZ8OHnSH4XzPGpEYbNQ4DOPRzVIJVgjU5rfg_SoXMy-by2brYojr4GAOafSRG1XNxaluc2hWXB07__Mgef2kqAx-3QB5U934OLu_1X7bfu8-ljg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034244246</pqid></control><display><type>article</type><title>Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification</title><source>ACS Publications</source><creator>Kadela, Karolina ; Grzybek, Gabriela ; Kotarba, Andrzej ; Stelmachowski, Paweł</creator><creatorcontrib>Kadela, Karolina ; Grzybek, Gabriela ; Kotarba, Andrzej ; Stelmachowski, Paweł</creatorcontrib><description>Graphene-based materials have great potential for applications in many fields, but their poor dispersion in polar solvents and chemical inertness require improvements. Low-temperature plasma allows the precise modification of materials, improving the physicochemical properties of the surface and thus creating the possibility of their potential use. Plasma treatment offers the possibility of introducing oxygen functional groups simply, rapidly, and in a controlled way. In this work, a systematic investigation of the effect of plasma modification on graphene nanoplatelets has been carried out to determine the optimal plasma parameters, especially the exposure time, for introducing the highest amount of oxygen functional groups on a surface. Different gases (O2, CO2, air, Ar, and C2H4) were used for this purpose. The chemical nature of the introduced oxygen-containing functionalities was characterized by X-ray photoelectron spectroscopy, and the structural properties of the materials were studied by Raman spectroscopy. The plasma-induced changes have been shown to evolve as the surface functionalities observed after plasma treatment are unstable. The immersion of the materials in liquids was carried out to check the reactivity of carbons in postplasma reactions. Stabilization of the material’s surface after plasma treatment using CH3COOH was the most effective for introducing oxygen functional groups.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c01226</identifier><identifier>PMID: 38575853</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>air ; carbon dioxide ; exposure duration ; graphene ; nanocomposites ; oxygen ; Raman spectroscopy ; Surfaces, Interfaces, and Applications ; X-ray photoelectron spectroscopy</subject><ispartof>ACS applied materials &amp; interfaces, 2024-04, Vol.16 (15), p.19771-19779</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a414t-9f28bff4e3209bc96de1a34c12cf01b585f1e6afdd58ee2c91e987ca9d0417af3</cites><orcidid>0000-0003-4815-0051 ; 0000-0002-8540-9715 ; 0000-0003-1126-8101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c01226$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c01226$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38575853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadela, Karolina</creatorcontrib><creatorcontrib>Grzybek, Gabriela</creatorcontrib><creatorcontrib>Kotarba, Andrzej</creatorcontrib><creatorcontrib>Stelmachowski, Paweł</creatorcontrib><title>Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Graphene-based materials have great potential for applications in many fields, but their poor dispersion in polar solvents and chemical inertness require improvements. Low-temperature plasma allows the precise modification of materials, improving the physicochemical properties of the surface and thus creating the possibility of their potential use. Plasma treatment offers the possibility of introducing oxygen functional groups simply, rapidly, and in a controlled way. In this work, a systematic investigation of the effect of plasma modification on graphene nanoplatelets has been carried out to determine the optimal plasma parameters, especially the exposure time, for introducing the highest amount of oxygen functional groups on a surface. Different gases (O2, CO2, air, Ar, and C2H4) were used for this purpose. The chemical nature of the introduced oxygen-containing functionalities was characterized by X-ray photoelectron spectroscopy, and the structural properties of the materials were studied by Raman spectroscopy. The plasma-induced changes have been shown to evolve as the surface functionalities observed after plasma treatment are unstable. The immersion of the materials in liquids was carried out to check the reactivity of carbons in postplasma reactions. Stabilization of the material’s surface after plasma treatment using CH3COOH was the most effective for introducing oxygen functional groups.</description><subject>air</subject><subject>carbon dioxide</subject><subject>exposure duration</subject><subject>graphene</subject><subject>nanocomposites</subject><subject>oxygen</subject><subject>Raman spectroscopy</subject><subject>Surfaces, Interfaces, and Applications</subject><subject>X-ray photoelectron spectroscopy</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAURUVpaNK02yyDl6Xgib7ssVelhDQJTNsQ0m7FG_lprGBLriQn5N9XYSZDuyhdSaDzDlfvEnLC6IJRzs5ARxjtQmrKOK9fkSPWSlk2vOKv93cpD8nbGO8prQWn1RtyKJpqWTWVOCI_L1wPTlu3KS4DTD06LL6B89MACQdMxS2CTvbBpqci9cHPm75Y-cfyDscJA6Q5YHEzQByh-Oo7a6yGZL17Rw4MDBHf785j8uPLxd35Vbn6fnl9_nlVgmQyla3hzdoYiTlXu9Zt3SEDITXj2lC2zhENwxpM11UNItctw7ZZamg7KtkSjDgmn7beaV6P2Gl0KcCgpmBHCE_Kg1V_vzjbq41_UIxRSSteZ8OHnSH4XzPGpEYbNQ4DOPRzVIJVgjU5rfg_SoXMy-by2brYojr4GAOafSRG1XNxaluc2hWXB07__Mgef2kqAx-3QB5U934OLu_1X7bfu8-ljg</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Kadela, Karolina</creator><creator>Grzybek, Gabriela</creator><creator>Kotarba, Andrzej</creator><creator>Stelmachowski, Paweł</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4815-0051</orcidid><orcidid>https://orcid.org/0000-0002-8540-9715</orcidid><orcidid>https://orcid.org/0000-0003-1126-8101</orcidid></search><sort><creationdate>20240417</creationdate><title>Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification</title><author>Kadela, Karolina ; Grzybek, Gabriela ; Kotarba, Andrzej ; Stelmachowski, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-9f28bff4e3209bc96de1a34c12cf01b585f1e6afdd58ee2c91e987ca9d0417af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>air</topic><topic>carbon dioxide</topic><topic>exposure duration</topic><topic>graphene</topic><topic>nanocomposites</topic><topic>oxygen</topic><topic>Raman spectroscopy</topic><topic>Surfaces, Interfaces, and Applications</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadela, Karolina</creatorcontrib><creatorcontrib>Grzybek, Gabriela</creatorcontrib><creatorcontrib>Kotarba, Andrzej</creatorcontrib><creatorcontrib>Stelmachowski, Paweł</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadela, Karolina</au><au>Grzybek, Gabriela</au><au>Kotarba, Andrzej</au><au>Stelmachowski, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>19771</spage><epage>19779</epage><pages>19771-19779</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Graphene-based materials have great potential for applications in many fields, but their poor dispersion in polar solvents and chemical inertness require improvements. Low-temperature plasma allows the precise modification of materials, improving the physicochemical properties of the surface and thus creating the possibility of their potential use. Plasma treatment offers the possibility of introducing oxygen functional groups simply, rapidly, and in a controlled way. In this work, a systematic investigation of the effect of plasma modification on graphene nanoplatelets has been carried out to determine the optimal plasma parameters, especially the exposure time, for introducing the highest amount of oxygen functional groups on a surface. Different gases (O2, CO2, air, Ar, and C2H4) were used for this purpose. The chemical nature of the introduced oxygen-containing functionalities was characterized by X-ray photoelectron spectroscopy, and the structural properties of the materials were studied by Raman spectroscopy. The plasma-induced changes have been shown to evolve as the surface functionalities observed after plasma treatment are unstable. The immersion of the materials in liquids was carried out to check the reactivity of carbons in postplasma reactions. Stabilization of the material’s surface after plasma treatment using CH3COOH was the most effective for introducing oxygen functional groups.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38575853</pmid><doi>10.1021/acsami.4c01226</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4815-0051</orcidid><orcidid>https://orcid.org/0000-0002-8540-9715</orcidid><orcidid>https://orcid.org/0000-0003-1126-8101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-04, Vol.16 (15), p.19771-19779
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11040526
source ACS Publications
subjects air
carbon dioxide
exposure duration
graphene
nanocomposites
oxygen
Raman spectroscopy
Surfaces, Interfaces, and Applications
X-ray photoelectron spectroscopy
title Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Graphene%20Nanoplatelet%20Reactivity%20through%20Low-Temperature%20Plasma%20Modification&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kadela,%20Karolina&rft.date=2024-04-17&rft.volume=16&rft.issue=15&rft.spage=19771&rft.epage=19779&rft.pages=19771-19779&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c01226&rft_dat=%3Cproquest_pubme%3E3034244246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034244246&rft_id=info:pmid/38575853&rfr_iscdi=true