Automated Growth Rate Measurement of the Facet Surfaces of Single Crystals of the β‑Form of l‑Glutamic Acid Using Machine Learning Image Processing

Precision measurement of the growth rate of individual single crystal facets (hkl) represents an important component in the design of industrial crystallization processes. Current approaches for crystal growth measurement using optical microscopy are labor intensive and prone to error. An automated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2024-04, Vol.24 (8), p.3277-3288
Hauptverfasser: Jiang, Chen, Ma, Cai Y., Hazlehurst, Thomas A., Ilett, Thomas P., Jackson, Alexander S. M., Hogg, David C., Roberts, Kevin J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3288
container_issue 8
container_start_page 3277
container_title Crystal growth & design
container_volume 24
creator Jiang, Chen
Ma, Cai Y.
Hazlehurst, Thomas A.
Ilett, Thomas P.
Jackson, Alexander S. M.
Hogg, David C.
Roberts, Kevin J.
description Precision measurement of the growth rate of individual single crystal facets (hkl) represents an important component in the design of industrial crystallization processes. Current approaches for crystal growth measurement using optical microscopy are labor intensive and prone to error. An automated process using state-of-the-art computer vision and machine learning to segment and measure the crystal images is presented. The accuracies and efficiencies of the new crystal sizing approach are evaluated against existing manual and semi-automatic methods, demonstrating equivalent accuracy but over a much shorter time, thereby enabling a more complete kinematic analysis of the overall crystallization process. This is applied to measure in situ the crystal growth rates and through this determining the associated kinetic mechanisms for the crystallization of β-form l-glutamic acid from the solution phase. Growth on the {101} capping faces is consistent with a Birth and Spread mechanism, in agreement with the literature, while the growth rate of the {021} prismatic faces, previously not available in the literature, is consistent with a Burton–Cabrera–Frank screw dislocation mechanism. At a typical supersaturation of σ = 0.78, the growth rate of the {101} capping faces (3.2 × 10–8 m s–1) is found to be 17 times that of the {021} prismatic faces (1.9 × 10–9 m s–1). Both capping and prismatic faces are found to have dead zones in their growth kinetic profiles, with the capping faces (σ c = 0.23) being about half that of the prismatic faces (σ c = 0.46). The importance of this overall approach as an integral component of the digital design of industrial crystallization processes is highlighted.
doi_str_mv 10.1021/acs.cgd.3c01548
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11036364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046514322</sourcerecordid><originalsourceid>FETCH-LOGICAL-a384t-81dc2b286ef50a11531acd8e97826a3372c1bb94c04644cf44ed249981a286c13</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EoqWwZoe8REJJ_TvxrFAUkVApFYjStXXjuZNMNTMutqeoO16BHc_Bg_AQPAkeJalgwcrX19851_Yh5CVnU84EPwcXp25bTaVjXCvziJxyLcxkppl-fKyVkSfkWYw3jLFZIeVTciJNoctCm1PyYz4k30HCiq6C_5p29FPe0EuEOATssE_U1zTtkC7BYaJXQ6hzEcfuVdNvW6SLcB8TtPEI_vr5-9v3pQ_d2GhzvWqHBF3j6Nw1Fb2OWUYvwe2aHukaIfRj46KDLdKPwWfzkXhOntTZFF8c1jNyvXz3efF-sv6wuljM1xOQRqWJ4ZUTG2EKrDUDzrXk4CqD5cyIAqScCcc3m1I5pgqlXK0UVkKVpeGQRY7LM_J273s7bDqsXH5xgNbehqaDcG89NPbfk77Z2a2_s5wzWchCZYfXB4fgvwwYk-2a6LBtoUc_RCvzaM2VFCKj53vUBR9jwPphDmd2DNTmQG0O1B4CzYpXf1_vgT8mmIE3e2BU3vgh9Pm3_mv3B5h9sD0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046514322</pqid></control><display><type>article</type><title>Automated Growth Rate Measurement of the Facet Surfaces of Single Crystals of the β‑Form of l‑Glutamic Acid Using Machine Learning Image Processing</title><source>American Chemical Society</source><creator>Jiang, Chen ; Ma, Cai Y. ; Hazlehurst, Thomas A. ; Ilett, Thomas P. ; Jackson, Alexander S. M. ; Hogg, David C. ; Roberts, Kevin J.</creator><creatorcontrib>Jiang, Chen ; Ma, Cai Y. ; Hazlehurst, Thomas A. ; Ilett, Thomas P. ; Jackson, Alexander S. M. ; Hogg, David C. ; Roberts, Kevin J.</creatorcontrib><description>Precision measurement of the growth rate of individual single crystal facets (hkl) represents an important component in the design of industrial crystallization processes. Current approaches for crystal growth measurement using optical microscopy are labor intensive and prone to error. An automated process using state-of-the-art computer vision and machine learning to segment and measure the crystal images is presented. The accuracies and efficiencies of the new crystal sizing approach are evaluated against existing manual and semi-automatic methods, demonstrating equivalent accuracy but over a much shorter time, thereby enabling a more complete kinematic analysis of the overall crystallization process. This is applied to measure in situ the crystal growth rates and through this determining the associated kinetic mechanisms for the crystallization of β-form l-glutamic acid from the solution phase. Growth on the {101} capping faces is consistent with a Birth and Spread mechanism, in agreement with the literature, while the growth rate of the {021} prismatic faces, previously not available in the literature, is consistent with a Burton–Cabrera–Frank screw dislocation mechanism. At a typical supersaturation of σ = 0.78, the growth rate of the {101} capping faces (3.2 × 10–8 m s–1) is found to be 17 times that of the {021} prismatic faces (1.9 × 10–9 m s–1). Both capping and prismatic faces are found to have dead zones in their growth kinetic profiles, with the capping faces (σ c = 0.23) being about half that of the prismatic faces (σ c = 0.46). The importance of this overall approach as an integral component of the digital design of industrial crystallization processes is highlighted.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.3c01548</identifier><identifier>PMID: 38659658</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Crystal growth &amp; design, 2024-04, Vol.24 (8), p.3277-3288</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society.</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a384t-81dc2b286ef50a11531acd8e97826a3372c1bb94c04644cf44ed249981a286c13</cites><orcidid>0000-0002-6125-9564 ; 0000-0002-1070-7435 ; 0000-0002-4576-7411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.3c01548$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.3c01548$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38659658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Ma, Cai Y.</creatorcontrib><creatorcontrib>Hazlehurst, Thomas A.</creatorcontrib><creatorcontrib>Ilett, Thomas P.</creatorcontrib><creatorcontrib>Jackson, Alexander S. M.</creatorcontrib><creatorcontrib>Hogg, David C.</creatorcontrib><creatorcontrib>Roberts, Kevin J.</creatorcontrib><title>Automated Growth Rate Measurement of the Facet Surfaces of Single Crystals of the β‑Form of l‑Glutamic Acid Using Machine Learning Image Processing</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>Precision measurement of the growth rate of individual single crystal facets (hkl) represents an important component in the design of industrial crystallization processes. Current approaches for crystal growth measurement using optical microscopy are labor intensive and prone to error. An automated process using state-of-the-art computer vision and machine learning to segment and measure the crystal images is presented. The accuracies and efficiencies of the new crystal sizing approach are evaluated against existing manual and semi-automatic methods, demonstrating equivalent accuracy but over a much shorter time, thereby enabling a more complete kinematic analysis of the overall crystallization process. This is applied to measure in situ the crystal growth rates and through this determining the associated kinetic mechanisms for the crystallization of β-form l-glutamic acid from the solution phase. Growth on the {101} capping faces is consistent with a Birth and Spread mechanism, in agreement with the literature, while the growth rate of the {021} prismatic faces, previously not available in the literature, is consistent with a Burton–Cabrera–Frank screw dislocation mechanism. At a typical supersaturation of σ = 0.78, the growth rate of the {101} capping faces (3.2 × 10–8 m s–1) is found to be 17 times that of the {021} prismatic faces (1.9 × 10–9 m s–1). Both capping and prismatic faces are found to have dead zones in their growth kinetic profiles, with the capping faces (σ c = 0.23) being about half that of the prismatic faces (σ c = 0.46). The importance of this overall approach as an integral component of the digital design of industrial crystallization processes is highlighted.</description><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc1uEzEUhS0EoqWwZoe8REJJ_TvxrFAUkVApFYjStXXjuZNMNTMutqeoO16BHc_Bg_AQPAkeJalgwcrX19851_Yh5CVnU84EPwcXp25bTaVjXCvziJxyLcxkppl-fKyVkSfkWYw3jLFZIeVTciJNoctCm1PyYz4k30HCiq6C_5p29FPe0EuEOATssE_U1zTtkC7BYaJXQ6hzEcfuVdNvW6SLcB8TtPEI_vr5-9v3pQ_d2GhzvWqHBF3j6Nw1Fb2OWUYvwe2aHukaIfRj46KDLdKPwWfzkXhOntTZFF8c1jNyvXz3efF-sv6wuljM1xOQRqWJ4ZUTG2EKrDUDzrXk4CqD5cyIAqScCcc3m1I5pgqlXK0UVkKVpeGQRY7LM_J273s7bDqsXH5xgNbehqaDcG89NPbfk77Z2a2_s5wzWchCZYfXB4fgvwwYk-2a6LBtoUc_RCvzaM2VFCKj53vUBR9jwPphDmd2DNTmQG0O1B4CzYpXf1_vgT8mmIE3e2BU3vgh9Pm3_mv3B5h9sD0</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Jiang, Chen</creator><creator>Ma, Cai Y.</creator><creator>Hazlehurst, Thomas A.</creator><creator>Ilett, Thomas P.</creator><creator>Jackson, Alexander S. M.</creator><creator>Hogg, David C.</creator><creator>Roberts, Kevin J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6125-9564</orcidid><orcidid>https://orcid.org/0000-0002-1070-7435</orcidid><orcidid>https://orcid.org/0000-0002-4576-7411</orcidid></search><sort><creationdate>20240417</creationdate><title>Automated Growth Rate Measurement of the Facet Surfaces of Single Crystals of the β‑Form of l‑Glutamic Acid Using Machine Learning Image Processing</title><author>Jiang, Chen ; Ma, Cai Y. ; Hazlehurst, Thomas A. ; Ilett, Thomas P. ; Jackson, Alexander S. M. ; Hogg, David C. ; Roberts, Kevin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a384t-81dc2b286ef50a11531acd8e97826a3372c1bb94c04644cf44ed249981a286c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Ma, Cai Y.</creatorcontrib><creatorcontrib>Hazlehurst, Thomas A.</creatorcontrib><creatorcontrib>Ilett, Thomas P.</creatorcontrib><creatorcontrib>Jackson, Alexander S. M.</creatorcontrib><creatorcontrib>Hogg, David C.</creatorcontrib><creatorcontrib>Roberts, Kevin J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chen</au><au>Ma, Cai Y.</au><au>Hazlehurst, Thomas A.</au><au>Ilett, Thomas P.</au><au>Jackson, Alexander S. M.</au><au>Hogg, David C.</au><au>Roberts, Kevin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Growth Rate Measurement of the Facet Surfaces of Single Crystals of the β‑Form of l‑Glutamic Acid Using Machine Learning Image Processing</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>24</volume><issue>8</issue><spage>3277</spage><epage>3288</epage><pages>3277-3288</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Precision measurement of the growth rate of individual single crystal facets (hkl) represents an important component in the design of industrial crystallization processes. Current approaches for crystal growth measurement using optical microscopy are labor intensive and prone to error. An automated process using state-of-the-art computer vision and machine learning to segment and measure the crystal images is presented. The accuracies and efficiencies of the new crystal sizing approach are evaluated against existing manual and semi-automatic methods, demonstrating equivalent accuracy but over a much shorter time, thereby enabling a more complete kinematic analysis of the overall crystallization process. This is applied to measure in situ the crystal growth rates and through this determining the associated kinetic mechanisms for the crystallization of β-form l-glutamic acid from the solution phase. Growth on the {101} capping faces is consistent with a Birth and Spread mechanism, in agreement with the literature, while the growth rate of the {021} prismatic faces, previously not available in the literature, is consistent with a Burton–Cabrera–Frank screw dislocation mechanism. At a typical supersaturation of σ = 0.78, the growth rate of the {101} capping faces (3.2 × 10–8 m s–1) is found to be 17 times that of the {021} prismatic faces (1.9 × 10–9 m s–1). Both capping and prismatic faces are found to have dead zones in their growth kinetic profiles, with the capping faces (σ c = 0.23) being about half that of the prismatic faces (σ c = 0.46). The importance of this overall approach as an integral component of the digital design of industrial crystallization processes is highlighted.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38659658</pmid><doi>10.1021/acs.cgd.3c01548</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6125-9564</orcidid><orcidid>https://orcid.org/0000-0002-1070-7435</orcidid><orcidid>https://orcid.org/0000-0002-4576-7411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2024-04, Vol.24 (8), p.3277-3288
issn 1528-7483
1528-7505
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11036364
source American Chemical Society
title Automated Growth Rate Measurement of the Facet Surfaces of Single Crystals of the β‑Form of l‑Glutamic Acid Using Machine Learning Image Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Growth%20Rate%20Measurement%20of%20the%20Facet%20Surfaces%20of%20Single%20Crystals%20of%20the%20%CE%B2%E2%80%91Form%20of%20l%E2%80%91Glutamic%20Acid%20Using%20Machine%20Learning%20Image%20Processing&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Jiang,%20Chen&rft.date=2024-04-17&rft.volume=24&rft.issue=8&rft.spage=3277&rft.epage=3288&rft.pages=3277-3288&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.3c01548&rft_dat=%3Cproquest_pubme%3E3046514322%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046514322&rft_id=info:pmid/38659658&rfr_iscdi=true