Bioorthogonal Radiolabeling of Azide-Modified Bacteria Using [18F]FB-sulfo-DBCO
Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemi...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2024-04, Vol.35 (4), p.517-527 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 527 |
---|---|
container_issue | 4 |
container_start_page | 517 |
container_title | Bioconjugate chemistry |
container_volume | 35 |
creator | Alanizi, Aryn A. Sorlin, Alexandre M. Parker, Matthew F. L. López-Álvarez, Marina Qin, Hecong Lee, Sang Hee Blecha, Joseph Rosenberg, Oren S. Engel, Joanne Ohliger, Michael A. Flavell, Robert R. Wilson, David M. |
description | Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent “click” cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide–alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification. |
doi_str_mv | 10.1021/acs.bioconjchem.4c00024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11036355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043311794</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-4a0e92da7b277cae1f7a74b67bba8a96af8a59cb5cb1fd67b4765c30205a67843</originalsourceid><addsrcrecordid>eNqFkc1qGzEUhUVJqNO0r9AOZD2ufkeaVYmduA0kGEq9KkVcaTS2zHiUSuNA8vSRsWOSVVYS0rnfuZyD0DeCxwRT8h1sGhsfbOjXduU2Y24xxpR_QGdEUFxyRehJvmPOSqIwHaFPKa2zpCaKfkQjpriiiogzNJ_4EOKwCsvQQ1f8hsaHDozrfL8sQltcPvnGlXeh8a13TTEBO7jooVikneAvUbN_s0mZtl0byqvJdP4ZnbbQJfflcJ6jxez6z_RXeTv_eTO9vC2BCzmUHLCraQPSUCktONJKkNxU0hhQUFfQKhC1NcIa0jb5mctKWIYpFlBJxdk5-rHn3m_NxjXW9UOETt9Hv4H4qAN4_fan9yu9DA-aEMwqJkQmXBwIMfzfujToddjGHELSLOfGCJH1zkfuVTaGlKJrjxYE610VOlehX1WhD1Xkya-vNzzOvWSfBWwv2BGO3u9hnwEf1Jte</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043311794</pqid></control><display><type>article</type><title>Bioorthogonal Radiolabeling of Azide-Modified Bacteria Using [18F]FB-sulfo-DBCO</title><source>American Chemical Society Journals</source><creator>Alanizi, Aryn A. ; Sorlin, Alexandre M. ; Parker, Matthew F. L. ; López-Álvarez, Marina ; Qin, Hecong ; Lee, Sang Hee ; Blecha, Joseph ; Rosenberg, Oren S. ; Engel, Joanne ; Ohliger, Michael A. ; Flavell, Robert R. ; Wilson, David M.</creator><creatorcontrib>Alanizi, Aryn A. ; Sorlin, Alexandre M. ; Parker, Matthew F. L. ; López-Álvarez, Marina ; Qin, Hecong ; Lee, Sang Hee ; Blecha, Joseph ; Rosenberg, Oren S. ; Engel, Joanne ; Ohliger, Michael A. ; Flavell, Robert R. ; Wilson, David M.</creatorcontrib><description>Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent “click” cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide–alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.4c00024</identifier><identifier>PMID: 38482815</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alanine ; Alkynes ; Amino acids ; Bacteria ; Bacterial diseases ; Bacterial infections ; Cell walls ; Cycloaddition ; D-Alanine ; D-Amino acids ; Emission analysis ; Fluorine ; Fluorine isotopes ; Labels ; Peptidoglycans ; Positron emission ; Positron emission tomography ; Radioactive tracers ; Radiochemistry ; Radiolabelling ; Synthesis</subject><ispartof>Bioconjugate chemistry, 2024-04, Vol.35 (4), p.517-527</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Apr 17, 2024</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a457t-4a0e92da7b277cae1f7a74b67bba8a96af8a59cb5cb1fd67b4765c30205a67843</citedby><cites>FETCH-LOGICAL-a457t-4a0e92da7b277cae1f7a74b67bba8a96af8a59cb5cb1fd67b4765c30205a67843</cites><orcidid>0000-0002-1095-046X ; 0000-0002-9589-6131 ; 0000-0001-8578-9968 ; 0000-0001-5794-5951 ; 0000-0002-8694-1199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.4c00024$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.4c00024$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38482815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alanizi, Aryn A.</creatorcontrib><creatorcontrib>Sorlin, Alexandre M.</creatorcontrib><creatorcontrib>Parker, Matthew F. L.</creatorcontrib><creatorcontrib>López-Álvarez, Marina</creatorcontrib><creatorcontrib>Qin, Hecong</creatorcontrib><creatorcontrib>Lee, Sang Hee</creatorcontrib><creatorcontrib>Blecha, Joseph</creatorcontrib><creatorcontrib>Rosenberg, Oren S.</creatorcontrib><creatorcontrib>Engel, Joanne</creatorcontrib><creatorcontrib>Ohliger, Michael A.</creatorcontrib><creatorcontrib>Flavell, Robert R.</creatorcontrib><creatorcontrib>Wilson, David M.</creatorcontrib><title>Bioorthogonal Radiolabeling of Azide-Modified Bacteria Using [18F]FB-sulfo-DBCO</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent “click” cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide–alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.</description><subject>Alanine</subject><subject>Alkynes</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Cell walls</subject><subject>Cycloaddition</subject><subject>D-Alanine</subject><subject>D-Amino acids</subject><subject>Emission analysis</subject><subject>Fluorine</subject><subject>Fluorine isotopes</subject><subject>Labels</subject><subject>Peptidoglycans</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Radioactive tracers</subject><subject>Radiochemistry</subject><subject>Radiolabelling</subject><subject>Synthesis</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1qGzEUhUVJqNO0r9AOZD2ufkeaVYmduA0kGEq9KkVcaTS2zHiUSuNA8vSRsWOSVVYS0rnfuZyD0DeCxwRT8h1sGhsfbOjXduU2Y24xxpR_QGdEUFxyRehJvmPOSqIwHaFPKa2zpCaKfkQjpriiiogzNJ_4EOKwCsvQQ1f8hsaHDozrfL8sQltcPvnGlXeh8a13TTEBO7jooVikneAvUbN_s0mZtl0byqvJdP4ZnbbQJfflcJ6jxez6z_RXeTv_eTO9vC2BCzmUHLCraQPSUCktONJKkNxU0hhQUFfQKhC1NcIa0jb5mctKWIYpFlBJxdk5-rHn3m_NxjXW9UOETt9Hv4H4qAN4_fan9yu9DA-aEMwqJkQmXBwIMfzfujToddjGHELSLOfGCJH1zkfuVTaGlKJrjxYE610VOlehX1WhD1Xkya-vNzzOvWSfBWwv2BGO3u9hnwEf1Jte</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Alanizi, Aryn A.</creator><creator>Sorlin, Alexandre M.</creator><creator>Parker, Matthew F. L.</creator><creator>López-Álvarez, Marina</creator><creator>Qin, Hecong</creator><creator>Lee, Sang Hee</creator><creator>Blecha, Joseph</creator><creator>Rosenberg, Oren S.</creator><creator>Engel, Joanne</creator><creator>Ohliger, Michael A.</creator><creator>Flavell, Robert R.</creator><creator>Wilson, David M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1095-046X</orcidid><orcidid>https://orcid.org/0000-0002-9589-6131</orcidid><orcidid>https://orcid.org/0000-0001-8578-9968</orcidid><orcidid>https://orcid.org/0000-0001-5794-5951</orcidid><orcidid>https://orcid.org/0000-0002-8694-1199</orcidid></search><sort><creationdate>20240417</creationdate><title>Bioorthogonal Radiolabeling of Azide-Modified Bacteria Using [18F]FB-sulfo-DBCO</title><author>Alanizi, Aryn A. ; Sorlin, Alexandre M. ; Parker, Matthew F. L. ; López-Álvarez, Marina ; Qin, Hecong ; Lee, Sang Hee ; Blecha, Joseph ; Rosenberg, Oren S. ; Engel, Joanne ; Ohliger, Michael A. ; Flavell, Robert R. ; Wilson, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-4a0e92da7b277cae1f7a74b67bba8a96af8a59cb5cb1fd67b4765c30205a67843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alanine</topic><topic>Alkynes</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Cell walls</topic><topic>Cycloaddition</topic><topic>D-Alanine</topic><topic>D-Amino acids</topic><topic>Emission analysis</topic><topic>Fluorine</topic><topic>Fluorine isotopes</topic><topic>Labels</topic><topic>Peptidoglycans</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Radioactive tracers</topic><topic>Radiochemistry</topic><topic>Radiolabelling</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alanizi, Aryn A.</creatorcontrib><creatorcontrib>Sorlin, Alexandre M.</creatorcontrib><creatorcontrib>Parker, Matthew F. L.</creatorcontrib><creatorcontrib>López-Álvarez, Marina</creatorcontrib><creatorcontrib>Qin, Hecong</creatorcontrib><creatorcontrib>Lee, Sang Hee</creatorcontrib><creatorcontrib>Blecha, Joseph</creatorcontrib><creatorcontrib>Rosenberg, Oren S.</creatorcontrib><creatorcontrib>Engel, Joanne</creatorcontrib><creatorcontrib>Ohliger, Michael A.</creatorcontrib><creatorcontrib>Flavell, Robert R.</creatorcontrib><creatorcontrib>Wilson, David M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alanizi, Aryn A.</au><au>Sorlin, Alexandre M.</au><au>Parker, Matthew F. L.</au><au>López-Álvarez, Marina</au><au>Qin, Hecong</au><au>Lee, Sang Hee</au><au>Blecha, Joseph</au><au>Rosenberg, Oren S.</au><au>Engel, Joanne</au><au>Ohliger, Michael A.</au><au>Flavell, Robert R.</au><au>Wilson, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioorthogonal Radiolabeling of Azide-Modified Bacteria Using [18F]FB-sulfo-DBCO</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>517</spage><epage>527</epage><pages>517-527</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent “click” cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide–alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38482815</pmid><doi>10.1021/acs.bioconjchem.4c00024</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1095-046X</orcidid><orcidid>https://orcid.org/0000-0002-9589-6131</orcidid><orcidid>https://orcid.org/0000-0001-8578-9968</orcidid><orcidid>https://orcid.org/0000-0001-5794-5951</orcidid><orcidid>https://orcid.org/0000-0002-8694-1199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2024-04, Vol.35 (4), p.517-527 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11036355 |
source | American Chemical Society Journals |
subjects | Alanine Alkynes Amino acids Bacteria Bacterial diseases Bacterial infections Cell walls Cycloaddition D-Alanine D-Amino acids Emission analysis Fluorine Fluorine isotopes Labels Peptidoglycans Positron emission Positron emission tomography Radioactive tracers Radiochemistry Radiolabelling Synthesis |
title | Bioorthogonal Radiolabeling of Azide-Modified Bacteria Using [18F]FB-sulfo-DBCO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioorthogonal%20Radiolabeling%20of%20Azide-Modified%20Bacteria%20Using%20%5B18F%5DFB-sulfo-DBCO&rft.jtitle=Bioconjugate%20chemistry&rft.au=Alanizi,%20Aryn%20A.&rft.date=2024-04-17&rft.volume=35&rft.issue=4&rft.spage=517&rft.epage=527&rft.pages=517-527&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.4c00024&rft_dat=%3Cproquest_pubme%3E3043311794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043311794&rft_id=info:pmid/38482815&rfr_iscdi=true |