Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis

Purpose: Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic Resonance in Medical Sciences 2024, Vol.23(2), pp.184-192
Hauptverfasser: Iwamura, Masatoshi, Ide, Satoru, Sato, Kenya, Kakuta, Akihisa, Tatsuo, Soichiro, Nozaki, Atsushi, Wakayama, Tetsuya, Ueno, Tatsuya, Haga, Rie, Kakizaki, Misako, Yokoyama, Yoko, Yamauchi, Ryoichi, Tsushima, Fumiyasu, Shibutani, Koichi, Tomiyama, Masahiko, Kakeda, Shingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 184
container_title Magnetic Resonance in Medical Sciences
container_volume 23
creator Iwamura, Masatoshi
Ide, Satoru
Sato, Kenya
Kakuta, Akihisa
Tatsuo, Soichiro
Nozaki, Atsushi
Wakayama, Tetsuya
Ueno, Tatsuya
Haga, Rie
Kakizaki, Misako
Yokoyama, Yoko
Yamauchi, Ryoichi
Tsushima, Fumiyasu
Shibutani, Koichi
Tomiyama, Masahiko
Kakeda, Shingo
description Purpose: Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions.Methods: Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions.Results: For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, < 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR.Conclusion: Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.
doi_str_mv 10.2463/mrms.mp.2022-0112
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11024714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854428809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-9894eeebd7b73c918f9b14c86be5673c5c427cd65f7dd888a42adb996867bcb13</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqXwA7ggS1y4ePFHPhwuCAqUSotAsJwtx5lsvErsYDtd8Xf4pTikrAoX25p53lfjmcmyp5RsWF7yl6Mfw2acNowwhgml7F52ToUgmDFS3k9vnleYU8HOskchHAjhIqUfZme8rFklquo8-7XrjcVhMBrQ7uhwa0awwTirBrRj-Ahm30do0fWo9sbu0dHEHr0DmNAWlLcphBsVEvAVtLMh-lnHpH6VBJN3NymxhcUuaSL8SSFjUewBvfUqvVyHvqhowMawen-ah2imAdA3PYB3wYTH2YNODQGe3N4X2fcP73eXH_H289X15Zst1kUhIq5FnQNA01ZNxXVNRVc3NNeibKAoU6TQOat0WxZd1bZCCJUz1TZ1XYqyanRD-UX2evWd5maEVqeavBrk5M2o_E_plJH_Zqzp5d7dSEoJyyuaJ4cXtw7e_ZghRDmaoGEYlAU3B8lEkecsDahO6PP_0IObfep6kJwIQgkRRZEoulI6dSJ46E7VUCKXFZDLCshxkssKyGUFkubZ3W-cFH9nnoCrFTiEqPZwApSPJvV8tWRcsuW4a30idK-8BMt_AyN1y7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080100855</pqid></control><display><type>article</type><title>Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis</title><source>DOAJ Directory of Open Access Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Iwamura, Masatoshi ; Ide, Satoru ; Sato, Kenya ; Kakuta, Akihisa ; Tatsuo, Soichiro ; Nozaki, Atsushi ; Wakayama, Tetsuya ; Ueno, Tatsuya ; Haga, Rie ; Kakizaki, Misako ; Yokoyama, Yoko ; Yamauchi, Ryoichi ; Tsushima, Fumiyasu ; Shibutani, Koichi ; Tomiyama, Masahiko ; Kakeda, Shingo</creator><creatorcontrib>Iwamura, Masatoshi ; Ide, Satoru ; Sato, Kenya ; Kakuta, Akihisa ; Tatsuo, Soichiro ; Nozaki, Atsushi ; Wakayama, Tetsuya ; Ueno, Tatsuya ; Haga, Rie ; Kakizaki, Misako ; Yokoyama, Yoko ; Yamauchi, Ryoichi ; Tsushima, Fumiyasu ; Shibutani, Koichi ; Tomiyama, Masahiko ; Kakeda, Shingo</creatorcontrib><description>Purpose: Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions.Methods: Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions.Results: For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, &lt; 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR.Conclusion: Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.</description><identifier>ISSN: 1347-3182</identifier><identifier>EISSN: 1880-2206</identifier><identifier>DOI: 10.2463/mrms.mp.2022-0112</identifier><identifier>PMID: 36927877</identifier><language>eng</language><publisher>Japan: Japanese Society for Magnetic Resonance in Medicine</publisher><subject>Basal ganglia ; brain ; Brain stem ; Cerebellum ; Cerebral hemispheres ; Deep learning ; deep learning-based reconstruction ; Ganglia ; Image processing ; Image quality ; Image reconstruction ; Lesions ; Magnetic resonance imaging ; Major Paper ; Medical imaging ; Multiple sclerosis ; Neuroimaging ; Spatial discrimination learning ; Spatial resolution</subject><ispartof>Magnetic Resonance in Medical Sciences, 2024, Vol.23(2), pp.184-192</ispartof><rights>2023 by Japanese Society for Magnetic Resonance in Medicine</rights><rights>2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Japanese Society for Magnetic Resonance in Medicine 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-9894eeebd7b73c918f9b14c86be5673c5c427cd65f7dd888a42adb996867bcb13</citedby><cites>FETCH-LOGICAL-c558t-9894eeebd7b73c918f9b14c86be5673c5c427cd65f7dd888a42adb996867bcb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024714/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024714/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1877,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36927877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwamura, Masatoshi</creatorcontrib><creatorcontrib>Ide, Satoru</creatorcontrib><creatorcontrib>Sato, Kenya</creatorcontrib><creatorcontrib>Kakuta, Akihisa</creatorcontrib><creatorcontrib>Tatsuo, Soichiro</creatorcontrib><creatorcontrib>Nozaki, Atsushi</creatorcontrib><creatorcontrib>Wakayama, Tetsuya</creatorcontrib><creatorcontrib>Ueno, Tatsuya</creatorcontrib><creatorcontrib>Haga, Rie</creatorcontrib><creatorcontrib>Kakizaki, Misako</creatorcontrib><creatorcontrib>Yokoyama, Yoko</creatorcontrib><creatorcontrib>Yamauchi, Ryoichi</creatorcontrib><creatorcontrib>Tsushima, Fumiyasu</creatorcontrib><creatorcontrib>Shibutani, Koichi</creatorcontrib><creatorcontrib>Tomiyama, Masahiko</creatorcontrib><creatorcontrib>Kakeda, Shingo</creatorcontrib><title>Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis</title><title>Magnetic Resonance in Medical Sciences</title><addtitle>MRMS</addtitle><description>Purpose: Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions.Methods: Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions.Results: For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, &lt; 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR.Conclusion: Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.</description><subject>Basal ganglia</subject><subject>brain</subject><subject>Brain stem</subject><subject>Cerebellum</subject><subject>Cerebral hemispheres</subject><subject>Deep learning</subject><subject>deep learning-based reconstruction</subject><subject>Ganglia</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Major Paper</subject><subject>Medical imaging</subject><subject>Multiple sclerosis</subject><subject>Neuroimaging</subject><subject>Spatial discrimination learning</subject><subject>Spatial resolution</subject><issn>1347-3182</issn><issn>1880-2206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhiMEoqXwA7ggS1y4ePFHPhwuCAqUSotAsJwtx5lsvErsYDtd8Xf4pTikrAoX25p53lfjmcmyp5RsWF7yl6Mfw2acNowwhgml7F52ToUgmDFS3k9vnleYU8HOskchHAjhIqUfZme8rFklquo8-7XrjcVhMBrQ7uhwa0awwTirBrRj-Ahm30do0fWo9sbu0dHEHr0DmNAWlLcphBsVEvAVtLMh-lnHpH6VBJN3NymxhcUuaSL8SSFjUewBvfUqvVyHvqhowMawen-ah2imAdA3PYB3wYTH2YNODQGe3N4X2fcP73eXH_H289X15Zst1kUhIq5FnQNA01ZNxXVNRVc3NNeibKAoU6TQOat0WxZd1bZCCJUz1TZ1XYqyanRD-UX2evWd5maEVqeavBrk5M2o_E_plJH_Zqzp5d7dSEoJyyuaJ4cXtw7e_ZghRDmaoGEYlAU3B8lEkecsDahO6PP_0IObfep6kJwIQgkRRZEoulI6dSJ46E7VUCKXFZDLCshxkssKyGUFkubZ3W-cFH9nnoCrFTiEqPZwApSPJvV8tWRcsuW4a30idK-8BMt_AyN1y7w</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Iwamura, Masatoshi</creator><creator>Ide, Satoru</creator><creator>Sato, Kenya</creator><creator>Kakuta, Akihisa</creator><creator>Tatsuo, Soichiro</creator><creator>Nozaki, Atsushi</creator><creator>Wakayama, Tetsuya</creator><creator>Ueno, Tatsuya</creator><creator>Haga, Rie</creator><creator>Kakizaki, Misako</creator><creator>Yokoyama, Yoko</creator><creator>Yamauchi, Ryoichi</creator><creator>Tsushima, Fumiyasu</creator><creator>Shibutani, Koichi</creator><creator>Tomiyama, Masahiko</creator><creator>Kakeda, Shingo</creator><general>Japanese Society for Magnetic Resonance in Medicine</general><general>Japan Science and Technology Agency</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240101</creationdate><title>Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis</title><author>Iwamura, Masatoshi ; Ide, Satoru ; Sato, Kenya ; Kakuta, Akihisa ; Tatsuo, Soichiro ; Nozaki, Atsushi ; Wakayama, Tetsuya ; Ueno, Tatsuya ; Haga, Rie ; Kakizaki, Misako ; Yokoyama, Yoko ; Yamauchi, Ryoichi ; Tsushima, Fumiyasu ; Shibutani, Koichi ; Tomiyama, Masahiko ; Kakeda, Shingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-9894eeebd7b73c918f9b14c86be5673c5c427cd65f7dd888a42adb996867bcb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basal ganglia</topic><topic>brain</topic><topic>Brain stem</topic><topic>Cerebellum</topic><topic>Cerebral hemispheres</topic><topic>Deep learning</topic><topic>deep learning-based reconstruction</topic><topic>Ganglia</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Major Paper</topic><topic>Medical imaging</topic><topic>Multiple sclerosis</topic><topic>Neuroimaging</topic><topic>Spatial discrimination learning</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Iwamura, Masatoshi</creatorcontrib><creatorcontrib>Ide, Satoru</creatorcontrib><creatorcontrib>Sato, Kenya</creatorcontrib><creatorcontrib>Kakuta, Akihisa</creatorcontrib><creatorcontrib>Tatsuo, Soichiro</creatorcontrib><creatorcontrib>Nozaki, Atsushi</creatorcontrib><creatorcontrib>Wakayama, Tetsuya</creatorcontrib><creatorcontrib>Ueno, Tatsuya</creatorcontrib><creatorcontrib>Haga, Rie</creatorcontrib><creatorcontrib>Kakizaki, Misako</creatorcontrib><creatorcontrib>Yokoyama, Yoko</creatorcontrib><creatorcontrib>Yamauchi, Ryoichi</creatorcontrib><creatorcontrib>Tsushima, Fumiyasu</creatorcontrib><creatorcontrib>Shibutani, Koichi</creatorcontrib><creatorcontrib>Tomiyama, Masahiko</creatorcontrib><creatorcontrib>Kakeda, Shingo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic Resonance in Medical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwamura, Masatoshi</au><au>Ide, Satoru</au><au>Sato, Kenya</au><au>Kakuta, Akihisa</au><au>Tatsuo, Soichiro</au><au>Nozaki, Atsushi</au><au>Wakayama, Tetsuya</au><au>Ueno, Tatsuya</au><au>Haga, Rie</au><au>Kakizaki, Misako</au><au>Yokoyama, Yoko</au><au>Yamauchi, Ryoichi</au><au>Tsushima, Fumiyasu</au><au>Shibutani, Koichi</au><au>Tomiyama, Masahiko</au><au>Kakeda, Shingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis</atitle><jtitle>Magnetic Resonance in Medical Sciences</jtitle><addtitle>MRMS</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>23</volume><issue>2</issue><spage>184</spage><epage>192</epage><pages>184-192</pages><artnum>mp.2022-0112</artnum><issn>1347-3182</issn><eissn>1880-2206</eissn><abstract>Purpose: Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions.Methods: Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions.Results: For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, &lt; 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR.Conclusion: Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.</abstract><cop>Japan</cop><pub>Japanese Society for Magnetic Resonance in Medicine</pub><pmid>36927877</pmid><doi>10.2463/mrms.mp.2022-0112</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-3182
ispartof Magnetic Resonance in Medical Sciences, 2024, Vol.23(2), pp.184-192
issn 1347-3182
1880-2206
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11024714
source DOAJ Directory of Open Access Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Basal ganglia
brain
Brain stem
Cerebellum
Cerebral hemispheres
Deep learning
deep learning-based reconstruction
Ganglia
Image processing
Image quality
Image reconstruction
Lesions
Magnetic resonance imaging
Major Paper
Medical imaging
Multiple sclerosis
Neuroimaging
Spatial discrimination learning
Spatial resolution
title Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-slice%20Two-dimensional%20T2-weighted%20Imaging%20with%20Deep%20Learning-based%20Reconstruction:%20Improved%20Lesion%20Detection%20in%20the%20Brain%20of%20Patients%20with%20Multiple%20Sclerosis&rft.jtitle=Magnetic%20Resonance%20in%20Medical%20Sciences&rft.au=Iwamura,%20Masatoshi&rft.date=2024-01-01&rft.volume=23&rft.issue=2&rft.spage=184&rft.epage=192&rft.pages=184-192&rft.artnum=mp.2022-0112&rft.issn=1347-3182&rft.eissn=1880-2206&rft_id=info:doi/10.2463/mrms.mp.2022-0112&rft_dat=%3Cproquest_pubme%3E2854428809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080100855&rft_id=info:pmid/36927877&rfr_iscdi=true