Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia

Background Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. Me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CNS neuroscience & therapeutics 2024-04, Vol.30 (4), p.e14498-n/a
Hauptverfasser: Liu, Li, Hu, Han, Wu, Junfa, Koleske, Anthony J., Chen, Hongting, Wang, Nianhong, Yu, Kewei, Wu, Yi, Xiao, Xiao, Zhang, Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e14498
container_title CNS neuroscience & therapeutics
container_volume 30
creator Liu, Li
Hu, Han
Wu, Junfa
Koleske, Anthony J.
Chen, Hongting
Wang, Nianhong
Yu, Kewei
Wu, Yi
Xiao, Xiao
Zhang, Qun
description Background Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. Methods Mice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect. Results We found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS. Conclusions In this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke. Model for integrin α3 involvement in the rTMS‐modulated glutamatergic synaptic transmission after PT stroke.
doi_str_mv 10.1111/cns.14498
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11017422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049027358</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3708-b2994d480a736aa016748475960aa34b9bb3cdd20c69cfd3a1141db6c43c7b863</originalsourceid><addsrcrecordid>eNpdkk9u1DAUxiNERUthwQWQJTZspvW_xPYKoREtlSq6ANbWi-NJXCVOsJ1Ws-MInKB36EU4BCfBmZYR4IVt-fv50_fsVxSvCD4heZwaH08I50o-KY6IKMtVqbh6ut8zfFg8j_Ea44pKJZ8Vh0zISnBJjoq7C59sG5xHP-8ZchEF-212wTZoMwbUubb79f3HZjm03myzOtnkkruxKAXw0eTJQY8GaH0WDIrJDXMPyY0-X3S-mU32avs5wQDJhnZhth6mBd5ZDC7GTKMcYXDGoluXuhzEdHZw8KI42EAf7cvH9bj4evbhy_rj6vLq_GL9_nI1MYHlqqZK8YZLDIJVAJgs1XFRqgoDMF6rumamaSg2lTKbhgEhnDR1ZTgzopYVOy7ePfhOcz3Yxlifs_V6Cm6AsNUjOP2v4l2n2_FGE4KJ4JRmh7ePDmHMjxWTzoUZ2_fg7ThHTaXEkhJFZUbf_Idej3PwuT7NMFeYClYu1Ou_I-2z_Pm7DJw-ALeut9u9TrBemkLnptC7ptDrT593G_Yb5yGxOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049027358</pqid></control><display><type>article</type><title>Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Liu, Li ; Hu, Han ; Wu, Junfa ; Koleske, Anthony J. ; Chen, Hongting ; Wang, Nianhong ; Yu, Kewei ; Wu, Yi ; Xiao, Xiao ; Zhang, Qun</creator><creatorcontrib>Liu, Li ; Hu, Han ; Wu, Junfa ; Koleske, Anthony J. ; Chen, Hongting ; Wang, Nianhong ; Yu, Kewei ; Wu, Yi ; Xiao, Xiao ; Zhang, Qun</creatorcontrib><description>Background Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. Methods Mice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect. Results We found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS. Conclusions In this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke. Model for integrin α3 involvement in the rTMS‐modulated glutamatergic synaptic transmission after PT stroke.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/cns.14498</identifier><identifier>PMID: 37867481</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>AMPAR ; Animals ; Excitatory postsynaptic potentials ; glutamatergic synaptic transmission ; Glutamatergic transmission ; Glutamic acid receptors ; Humans ; Integrin alpha3 - metabolism ; integrin α3 ; Ischemia ; Ischemia - therapy ; ischemic stroke ; Magnetic fields ; Mice ; Motor task performance ; N-Methyl-D-aspartic acid receptors ; Neurons ; Original ; Proteins ; Receptor mechanisms ; repetitive transcranial magnetic stimulation (rTMS) ; Stroke ; Stroke - therapy ; Surgery ; Synaptic transmission ; Synaptic Transmission - genetics ; Transcranial magnetic stimulation ; Transcranial Magnetic Stimulation - methods ; Treatment Outcome ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>CNS neuroscience &amp; therapeutics, 2024-04, Vol.30 (4), p.e14498-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. CNS Neuroscience &amp; Therapeutics published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4955-3533 ; 0000-0001-8792-9362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017422/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017422/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37867481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Wu, Junfa</creatorcontrib><creatorcontrib>Koleske, Anthony J.</creatorcontrib><creatorcontrib>Chen, Hongting</creatorcontrib><creatorcontrib>Wang, Nianhong</creatorcontrib><creatorcontrib>Yu, Kewei</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Xiao, Xiao</creatorcontrib><creatorcontrib>Zhang, Qun</creatorcontrib><title>Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia</title><title>CNS neuroscience &amp; therapeutics</title><addtitle>CNS Neurosci Ther</addtitle><description>Background Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. Methods Mice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect. Results We found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS. Conclusions In this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke. Model for integrin α3 involvement in the rTMS‐modulated glutamatergic synaptic transmission after PT stroke.</description><subject>AMPAR</subject><subject>Animals</subject><subject>Excitatory postsynaptic potentials</subject><subject>glutamatergic synaptic transmission</subject><subject>Glutamatergic transmission</subject><subject>Glutamic acid receptors</subject><subject>Humans</subject><subject>Integrin alpha3 - metabolism</subject><subject>integrin α3</subject><subject>Ischemia</subject><subject>Ischemia - therapy</subject><subject>ischemic stroke</subject><subject>Magnetic fields</subject><subject>Mice</subject><subject>Motor task performance</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Neurons</subject><subject>Original</subject><subject>Proteins</subject><subject>Receptor mechanisms</subject><subject>repetitive transcranial magnetic stimulation (rTMS)</subject><subject>Stroke</subject><subject>Stroke - therapy</subject><subject>Surgery</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - genetics</subject><subject>Transcranial magnetic stimulation</subject><subject>Transcranial Magnetic Stimulation - methods</subject><subject>Treatment Outcome</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkk9u1DAUxiNERUthwQWQJTZspvW_xPYKoREtlSq6ANbWi-NJXCVOsJ1Ws-MInKB36EU4BCfBmZYR4IVt-fv50_fsVxSvCD4heZwaH08I50o-KY6IKMtVqbh6ut8zfFg8j_Ea44pKJZ8Vh0zISnBJjoq7C59sG5xHP-8ZchEF-212wTZoMwbUubb79f3HZjm03myzOtnkkruxKAXw0eTJQY8GaH0WDIrJDXMPyY0-X3S-mU32avs5wQDJhnZhth6mBd5ZDC7GTKMcYXDGoluXuhzEdHZw8KI42EAf7cvH9bj4evbhy_rj6vLq_GL9_nI1MYHlqqZK8YZLDIJVAJgs1XFRqgoDMF6rumamaSg2lTKbhgEhnDR1ZTgzopYVOy7ePfhOcz3Yxlifs_V6Cm6AsNUjOP2v4l2n2_FGE4KJ4JRmh7ePDmHMjxWTzoUZ2_fg7ThHTaXEkhJFZUbf_Idej3PwuT7NMFeYClYu1Ou_I-2z_Pm7DJw-ALeut9u9TrBemkLnptC7ptDrT593G_Yb5yGxOA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Liu, Li</creator><creator>Hu, Han</creator><creator>Wu, Junfa</creator><creator>Koleske, Anthony J.</creator><creator>Chen, Hongting</creator><creator>Wang, Nianhong</creator><creator>Yu, Kewei</creator><creator>Wu, Yi</creator><creator>Xiao, Xiao</creator><creator>Zhang, Qun</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4955-3533</orcidid><orcidid>https://orcid.org/0000-0001-8792-9362</orcidid></search><sort><creationdate>202404</creationdate><title>Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia</title><author>Liu, Li ; Hu, Han ; Wu, Junfa ; Koleske, Anthony J. ; Chen, Hongting ; Wang, Nianhong ; Yu, Kewei ; Wu, Yi ; Xiao, Xiao ; Zhang, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3708-b2994d480a736aa016748475960aa34b9bb3cdd20c69cfd3a1141db6c43c7b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AMPAR</topic><topic>Animals</topic><topic>Excitatory postsynaptic potentials</topic><topic>glutamatergic synaptic transmission</topic><topic>Glutamatergic transmission</topic><topic>Glutamic acid receptors</topic><topic>Humans</topic><topic>Integrin alpha3 - metabolism</topic><topic>integrin α3</topic><topic>Ischemia</topic><topic>Ischemia - therapy</topic><topic>ischemic stroke</topic><topic>Magnetic fields</topic><topic>Mice</topic><topic>Motor task performance</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Neurons</topic><topic>Original</topic><topic>Proteins</topic><topic>Receptor mechanisms</topic><topic>repetitive transcranial magnetic stimulation (rTMS)</topic><topic>Stroke</topic><topic>Stroke - therapy</topic><topic>Surgery</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - genetics</topic><topic>Transcranial magnetic stimulation</topic><topic>Transcranial Magnetic Stimulation - methods</topic><topic>Treatment Outcome</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Wu, Junfa</creatorcontrib><creatorcontrib>Koleske, Anthony J.</creatorcontrib><creatorcontrib>Chen, Hongting</creatorcontrib><creatorcontrib>Wang, Nianhong</creatorcontrib><creatorcontrib>Yu, Kewei</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Xiao, Xiao</creatorcontrib><creatorcontrib>Zhang, Qun</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience &amp; therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Li</au><au>Hu, Han</au><au>Wu, Junfa</au><au>Koleske, Anthony J.</au><au>Chen, Hongting</au><au>Wang, Nianhong</au><au>Yu, Kewei</au><au>Wu, Yi</au><au>Xiao, Xiao</au><au>Zhang, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia</atitle><jtitle>CNS neuroscience &amp; therapeutics</jtitle><addtitle>CNS Neurosci Ther</addtitle><date>2024-04</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>e14498</spage><epage>n/a</epage><pages>e14498-n/a</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>Background Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. Methods Mice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect. Results We found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS. Conclusions In this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke. Model for integrin α3 involvement in the rTMS‐modulated glutamatergic synaptic transmission after PT stroke.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37867481</pmid><doi>10.1111/cns.14498</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4955-3533</orcidid><orcidid>https://orcid.org/0000-0001-8792-9362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-5930
ispartof CNS neuroscience & therapeutics, 2024-04, Vol.30 (4), p.e14498-n/a
issn 1755-5930
1755-5949
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11017422
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects AMPAR
Animals
Excitatory postsynaptic potentials
glutamatergic synaptic transmission
Glutamatergic transmission
Glutamic acid receptors
Humans
Integrin alpha3 - metabolism
integrin α3
Ischemia
Ischemia - therapy
ischemic stroke
Magnetic fields
Mice
Motor task performance
N-Methyl-D-aspartic acid receptors
Neurons
Original
Proteins
Receptor mechanisms
repetitive transcranial magnetic stimulation (rTMS)
Stroke
Stroke - therapy
Surgery
Synaptic transmission
Synaptic Transmission - genetics
Transcranial magnetic stimulation
Transcranial Magnetic Stimulation - methods
Treatment Outcome
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
title Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrin%20%CE%B13%20is%20required%20for%20high%E2%80%90frequency%20repetitive%20transcranial%20magnetic%20stimulation%E2%80%90induced%20glutamatergic%20synaptic%20transmission%20in%20mice%20with%20ischemia&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Liu,%20Li&rft.date=2024-04&rft.volume=30&rft.issue=4&rft.spage=e14498&rft.epage=n/a&rft.pages=e14498-n/a&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/cns.14498&rft_dat=%3Cproquest_pubme%3E3049027358%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049027358&rft_id=info:pmid/37867481&rfr_iscdi=true