Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia
Background Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. Me...
Gespeichert in:
Veröffentlicht in: | CNS neuroscience & therapeutics 2024-04, Vol.30 (4), p.e14498-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e14498 |
container_title | CNS neuroscience & therapeutics |
container_volume | 30 |
creator | Liu, Li Hu, Han Wu, Junfa Koleske, Anthony J. Chen, Hongting Wang, Nianhong Yu, Kewei Wu, Yi Xiao, Xiao Zhang, Qun |
description | Background
Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear.
Methods
Mice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect.
Results
We found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS.
Conclusions
In this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke.
Model for integrin α3 involvement in the rTMS‐modulated glutamatergic synaptic transmission after PT stroke. |
doi_str_mv | 10.1111/cns.14498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11017422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049027358</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3708-b2994d480a736aa016748475960aa34b9bb3cdd20c69cfd3a1141db6c43c7b863</originalsourceid><addsrcrecordid>eNpdkk9u1DAUxiNERUthwQWQJTZspvW_xPYKoREtlSq6ANbWi-NJXCVOsJ1Ws-MInKB36EU4BCfBmZYR4IVt-fv50_fsVxSvCD4heZwaH08I50o-KY6IKMtVqbh6ut8zfFg8j_Ea44pKJZ8Vh0zISnBJjoq7C59sG5xHP-8ZchEF-212wTZoMwbUubb79f3HZjm03myzOtnkkruxKAXw0eTJQY8GaH0WDIrJDXMPyY0-X3S-mU32avs5wQDJhnZhth6mBd5ZDC7GTKMcYXDGoluXuhzEdHZw8KI42EAf7cvH9bj4evbhy_rj6vLq_GL9_nI1MYHlqqZK8YZLDIJVAJgs1XFRqgoDMF6rumamaSg2lTKbhgEhnDR1ZTgzopYVOy7ePfhOcz3Yxlifs_V6Cm6AsNUjOP2v4l2n2_FGE4KJ4JRmh7ePDmHMjxWTzoUZ2_fg7ThHTaXEkhJFZUbf_Idej3PwuT7NMFeYClYu1Ou_I-2z_Pm7DJw-ALeut9u9TrBemkLnptC7ptDrT593G_Yb5yGxOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049027358</pqid></control><display><type>article</type><title>Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Liu, Li ; Hu, Han ; Wu, Junfa ; Koleske, Anthony J. ; Chen, Hongting ; Wang, Nianhong ; Yu, Kewei ; Wu, Yi ; Xiao, Xiao ; Zhang, Qun</creator><creatorcontrib>Liu, Li ; Hu, Han ; Wu, Junfa ; Koleske, Anthony J. ; Chen, Hongting ; Wang, Nianhong ; Yu, Kewei ; Wu, Yi ; Xiao, Xiao ; Zhang, Qun</creatorcontrib><description>Background
Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear.
Methods
Mice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect.
Results
We found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS.
Conclusions
In this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke.
Model for integrin α3 involvement in the rTMS‐modulated glutamatergic synaptic transmission after PT stroke.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/cns.14498</identifier><identifier>PMID: 37867481</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>AMPAR ; Animals ; Excitatory postsynaptic potentials ; glutamatergic synaptic transmission ; Glutamatergic transmission ; Glutamic acid receptors ; Humans ; Integrin alpha3 - metabolism ; integrin α3 ; Ischemia ; Ischemia - therapy ; ischemic stroke ; Magnetic fields ; Mice ; Motor task performance ; N-Methyl-D-aspartic acid receptors ; Neurons ; Original ; Proteins ; Receptor mechanisms ; repetitive transcranial magnetic stimulation (rTMS) ; Stroke ; Stroke - therapy ; Surgery ; Synaptic transmission ; Synaptic Transmission - genetics ; Transcranial magnetic stimulation ; Transcranial Magnetic Stimulation - methods ; Treatment Outcome ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>CNS neuroscience & therapeutics, 2024-04, Vol.30 (4), p.e14498-n/a</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4955-3533 ; 0000-0001-8792-9362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017422/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017422/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37867481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Wu, Junfa</creatorcontrib><creatorcontrib>Koleske, Anthony J.</creatorcontrib><creatorcontrib>Chen, Hongting</creatorcontrib><creatorcontrib>Wang, Nianhong</creatorcontrib><creatorcontrib>Yu, Kewei</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Xiao, Xiao</creatorcontrib><creatorcontrib>Zhang, Qun</creatorcontrib><title>Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia</title><title>CNS neuroscience & therapeutics</title><addtitle>CNS Neurosci Ther</addtitle><description>Background
Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear.
Methods
Mice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect.
Results
We found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS.
Conclusions
In this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke.
Model for integrin α3 involvement in the rTMS‐modulated glutamatergic synaptic transmission after PT stroke.</description><subject>AMPAR</subject><subject>Animals</subject><subject>Excitatory postsynaptic potentials</subject><subject>glutamatergic synaptic transmission</subject><subject>Glutamatergic transmission</subject><subject>Glutamic acid receptors</subject><subject>Humans</subject><subject>Integrin alpha3 - metabolism</subject><subject>integrin α3</subject><subject>Ischemia</subject><subject>Ischemia - therapy</subject><subject>ischemic stroke</subject><subject>Magnetic fields</subject><subject>Mice</subject><subject>Motor task performance</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Neurons</subject><subject>Original</subject><subject>Proteins</subject><subject>Receptor mechanisms</subject><subject>repetitive transcranial magnetic stimulation (rTMS)</subject><subject>Stroke</subject><subject>Stroke - therapy</subject><subject>Surgery</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - genetics</subject><subject>Transcranial magnetic stimulation</subject><subject>Transcranial Magnetic Stimulation - methods</subject><subject>Treatment Outcome</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkk9u1DAUxiNERUthwQWQJTZspvW_xPYKoREtlSq6ANbWi-NJXCVOsJ1Ws-MInKB36EU4BCfBmZYR4IVt-fv50_fsVxSvCD4heZwaH08I50o-KY6IKMtVqbh6ut8zfFg8j_Ea44pKJZ8Vh0zISnBJjoq7C59sG5xHP-8ZchEF-212wTZoMwbUubb79f3HZjm03myzOtnkkruxKAXw0eTJQY8GaH0WDIrJDXMPyY0-X3S-mU32avs5wQDJhnZhth6mBd5ZDC7GTKMcYXDGoluXuhzEdHZw8KI42EAf7cvH9bj4evbhy_rj6vLq_GL9_nI1MYHlqqZK8YZLDIJVAJgs1XFRqgoDMF6rumamaSg2lTKbhgEhnDR1ZTgzopYVOy7ePfhOcz3Yxlifs_V6Cm6AsNUjOP2v4l2n2_FGE4KJ4JRmh7ePDmHMjxWTzoUZ2_fg7ThHTaXEkhJFZUbf_Idej3PwuT7NMFeYClYu1Ou_I-2z_Pm7DJw-ALeut9u9TrBemkLnptC7ptDrT593G_Yb5yGxOA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Liu, Li</creator><creator>Hu, Han</creator><creator>Wu, Junfa</creator><creator>Koleske, Anthony J.</creator><creator>Chen, Hongting</creator><creator>Wang, Nianhong</creator><creator>Yu, Kewei</creator><creator>Wu, Yi</creator><creator>Xiao, Xiao</creator><creator>Zhang, Qun</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4955-3533</orcidid><orcidid>https://orcid.org/0000-0001-8792-9362</orcidid></search><sort><creationdate>202404</creationdate><title>Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia</title><author>Liu, Li ; Hu, Han ; Wu, Junfa ; Koleske, Anthony J. ; Chen, Hongting ; Wang, Nianhong ; Yu, Kewei ; Wu, Yi ; Xiao, Xiao ; Zhang, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3708-b2994d480a736aa016748475960aa34b9bb3cdd20c69cfd3a1141db6c43c7b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AMPAR</topic><topic>Animals</topic><topic>Excitatory postsynaptic potentials</topic><topic>glutamatergic synaptic transmission</topic><topic>Glutamatergic transmission</topic><topic>Glutamic acid receptors</topic><topic>Humans</topic><topic>Integrin alpha3 - metabolism</topic><topic>integrin α3</topic><topic>Ischemia</topic><topic>Ischemia - therapy</topic><topic>ischemic stroke</topic><topic>Magnetic fields</topic><topic>Mice</topic><topic>Motor task performance</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Neurons</topic><topic>Original</topic><topic>Proteins</topic><topic>Receptor mechanisms</topic><topic>repetitive transcranial magnetic stimulation (rTMS)</topic><topic>Stroke</topic><topic>Stroke - therapy</topic><topic>Surgery</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - genetics</topic><topic>Transcranial magnetic stimulation</topic><topic>Transcranial Magnetic Stimulation - methods</topic><topic>Treatment Outcome</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Wu, Junfa</creatorcontrib><creatorcontrib>Koleske, Anthony J.</creatorcontrib><creatorcontrib>Chen, Hongting</creatorcontrib><creatorcontrib>Wang, Nianhong</creatorcontrib><creatorcontrib>Yu, Kewei</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Xiao, Xiao</creatorcontrib><creatorcontrib>Zhang, Qun</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience & therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Li</au><au>Hu, Han</au><au>Wu, Junfa</au><au>Koleske, Anthony J.</au><au>Chen, Hongting</au><au>Wang, Nianhong</au><au>Yu, Kewei</au><au>Wu, Yi</au><au>Xiao, Xiao</au><au>Zhang, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia</atitle><jtitle>CNS neuroscience & therapeutics</jtitle><addtitle>CNS Neurosci Ther</addtitle><date>2024-04</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>e14498</spage><epage>n/a</epage><pages>e14498-n/a</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>Background
Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post‐stroke motor recovery. However, the underlying mechanisms of rTMS regulates long‐lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear.
Methods
Mice were received 10‐Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10‐Hz rTMS in the mice with PT model. Moreover, we used wild‐type (WT) and NEX‐α3−/− mice to further explore the 10‐Hz rTMS effect.
Results
We found that 10‐Hz rTMS improved the post‐stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri‐infarct were significantly increased in the rTMS group. In contrast, 10‐Hz rTMS did not induce these aforementioned effects in NEX‐α3−/− mice. The amplitude of AMPAR‐mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX‐α3−/− mice with rTMS.
Conclusions
In this study, 10‐Hz rTMS improved the glutamatergic synaptic transmission in the peri‐infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke.
Model for integrin α3 involvement in the rTMS‐modulated glutamatergic synaptic transmission after PT stroke.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>37867481</pmid><doi>10.1111/cns.14498</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4955-3533</orcidid><orcidid>https://orcid.org/0000-0001-8792-9362</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-5930 |
ispartof | CNS neuroscience & therapeutics, 2024-04, Vol.30 (4), p.e14498-n/a |
issn | 1755-5930 1755-5949 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11017422 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | AMPAR Animals Excitatory postsynaptic potentials glutamatergic synaptic transmission Glutamatergic transmission Glutamic acid receptors Humans Integrin alpha3 - metabolism integrin α3 Ischemia Ischemia - therapy ischemic stroke Magnetic fields Mice Motor task performance N-Methyl-D-aspartic acid receptors Neurons Original Proteins Receptor mechanisms repetitive transcranial magnetic stimulation (rTMS) Stroke Stroke - therapy Surgery Synaptic transmission Synaptic Transmission - genetics Transcranial magnetic stimulation Transcranial Magnetic Stimulation - methods Treatment Outcome α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | Integrin α3 is required for high‐frequency repetitive transcranial magnetic stimulation‐induced glutamatergic synaptic transmission in mice with ischemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrin%20%CE%B13%20is%20required%20for%20high%E2%80%90frequency%20repetitive%20transcranial%20magnetic%20stimulation%E2%80%90induced%20glutamatergic%20synaptic%20transmission%20in%20mice%20with%20ischemia&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Liu,%20Li&rft.date=2024-04&rft.volume=30&rft.issue=4&rft.spage=e14498&rft.epage=n/a&rft.pages=e14498-n/a&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/cns.14498&rft_dat=%3Cproquest_pubme%3E3049027358%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049027358&rft_id=info:pmid/37867481&rfr_iscdi=true |