Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics

Purpose This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD). Methods A total of 53 healthy control (HC) participants, 55 patients w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CNS neuroscience & therapeutics 2024-04, Vol.30 (4), p.e14539-n/a
Hauptverfasser: Chen, Zhigeng, Bi, Sheng, Shan, Yi, Cui, Bixiao, Yang, Hongwei, Qi, Zhigang, Zhao, Zhilian, Han, Ying, Yan, Shaozhen, Lu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e14539
container_title CNS neuroscience & therapeutics
container_volume 30
creator Chen, Zhigeng
Bi, Sheng
Shan, Yi
Cui, Bixiao
Yang, Hongwei
Qi, Zhigang
Zhao, Zhilian
Han, Ying
Yan, Shaozhen
Lu, Jie
description Purpose This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD). Methods A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F‐fluorodeoxyglucose (18F‐FDG) PET, 3D arterial spin labeling (ASL), and high‐resolution T1‐weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad‐Score) of logistic regression models were evaluated from 5‐fold cross‐validation. Results The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single‐modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad‐Score differed significantly between the AD and HC (p 
doi_str_mv 10.1111/cns.14539
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11017421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049027100</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3439-3a8574e9d883c4bffc348b3476364dc84616e12d2d8d6db79374cad80d3f279b3</originalsourceid><addsrcrecordid>eNpdUcFO3DAUtBAV0G0P_IElDvSyrB07sX1CaMtSJGgrSs-WYzu7Xjlx6pe02p76Cf3GfklTQEjlXd5IMxrNe4PQMSVndJqF7eCM8pKpPXRERVnOS8XV_jNm5BC9BtgSUhVSyQN0yCRhVClxhOB2jEPoTTatH3KweBP6PlnT9iZiCOvODGP2gJuUsTc57rALZt0lCIBTgy_iz40Prc-nMBHgDXg8QujWmMrVn1-_V--v8OfL-8Xt3TW-My6kNlh4g141JoJ_-7Rn6Ovq8n75YX7z6ep6eXEz3zLO1JwZWQrulZOSWV43jWVc1oyLilXcWckrWnlauMJJV7laKCa4NU4Sx5pCqJrN0Pmjbz_WrXfWd0M2Ufc5tCbvdDJB_890YaPX6bumlFDBCzo5vHtyyOnb6GHQbQDrYzSdTyPo6Z2lIFJMCWfo5IV0m8bcTfdpRrgihaCETKrFo-pHiH73HIUS_a9IPRWpH4rUy49fHgD7C0J7krI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049027100</pqid></control><display><type>article</type><title>Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chen, Zhigeng ; Bi, Sheng ; Shan, Yi ; Cui, Bixiao ; Yang, Hongwei ; Qi, Zhigang ; Zhao, Zhilian ; Han, Ying ; Yan, Shaozhen ; Lu, Jie</creator><creatorcontrib>Chen, Zhigeng ; Bi, Sheng ; Shan, Yi ; Cui, Bixiao ; Yang, Hongwei ; Qi, Zhigang ; Zhao, Zhilian ; Han, Ying ; Yan, Shaozhen ; Lu, Jie</creatorcontrib><description>Purpose This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD). Methods A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F‐fluorodeoxyglucose (18F‐FDG) PET, 3D arterial spin labeling (ASL), and high‐resolution T1‐weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad‐Score) of logistic regression models were evaluated from 5‐fold cross‐validation. Results The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single‐modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad‐Score differed significantly between the AD and HC (p &lt; 0.001), aMCI and HC (p &lt; 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests. Conclusion Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications. This study aimed to investigate multiparametric imaging of the hippocampal radiomics for early diagnosis of AD using simultaneous PET/MRI. Our findings demonstrated that multi‐dimensional imaging of the hippocampal radiomics benefits the identification of early AD (aMCI especially) and may provide a potential biomarker for clinical applications in AD.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/cns.14539</identifier><identifier>PMID: 38031997</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons, Inc</publisher><subject>Alzheimer's disease ; Biomarkers ; Cerebrospinal fluid ; Cognitive ability ; Diagnosis ; Disease ; early diagnosis ; Feature selection ; Glucose ; hippocampal radiomics ; Hippocampus ; Machine learning ; Magnetic resonance imaging ; Metabolism ; Neurodegenerative diseases ; Original ; Pathology ; PET/MRI ; Positron emission tomography ; Radiomics ; Regression analysis ; Software ; Spin labeling ; Statistical analysis ; Tomography</subject><ispartof>CNS neuroscience &amp; therapeutics, 2024-04, Vol.30 (4), p.e14539-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0425-3921 ; 0000-0002-1675-5606 ; 0000-0003-0377-7424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017421/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017421/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids></links><search><creatorcontrib>Chen, Zhigeng</creatorcontrib><creatorcontrib>Bi, Sheng</creatorcontrib><creatorcontrib>Shan, Yi</creatorcontrib><creatorcontrib>Cui, Bixiao</creatorcontrib><creatorcontrib>Yang, Hongwei</creatorcontrib><creatorcontrib>Qi, Zhigang</creatorcontrib><creatorcontrib>Zhao, Zhilian</creatorcontrib><creatorcontrib>Han, Ying</creatorcontrib><creatorcontrib>Yan, Shaozhen</creatorcontrib><creatorcontrib>Lu, Jie</creatorcontrib><title>Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics</title><title>CNS neuroscience &amp; therapeutics</title><description>Purpose This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD). Methods A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F‐fluorodeoxyglucose (18F‐FDG) PET, 3D arterial spin labeling (ASL), and high‐resolution T1‐weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad‐Score) of logistic regression models were evaluated from 5‐fold cross‐validation. Results The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single‐modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad‐Score differed significantly between the AD and HC (p &lt; 0.001), aMCI and HC (p &lt; 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests. Conclusion Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications. This study aimed to investigate multiparametric imaging of the hippocampal radiomics for early diagnosis of AD using simultaneous PET/MRI. Our findings demonstrated that multi‐dimensional imaging of the hippocampal radiomics benefits the identification of early AD (aMCI especially) and may provide a potential biomarker for clinical applications in AD.</description><subject>Alzheimer's disease</subject><subject>Biomarkers</subject><subject>Cerebrospinal fluid</subject><subject>Cognitive ability</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>early diagnosis</subject><subject>Feature selection</subject><subject>Glucose</subject><subject>hippocampal radiomics</subject><subject>Hippocampus</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Original</subject><subject>Pathology</subject><subject>PET/MRI</subject><subject>Positron emission tomography</subject><subject>Radiomics</subject><subject>Regression analysis</subject><subject>Software</subject><subject>Spin labeling</subject><subject>Statistical analysis</subject><subject>Tomography</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdUcFO3DAUtBAV0G0P_IElDvSyrB07sX1CaMtSJGgrSs-WYzu7Xjlx6pe02p76Cf3GfklTQEjlXd5IMxrNe4PQMSVndJqF7eCM8pKpPXRERVnOS8XV_jNm5BC9BtgSUhVSyQN0yCRhVClxhOB2jEPoTTatH3KweBP6PlnT9iZiCOvODGP2gJuUsTc57rALZt0lCIBTgy_iz40Prc-nMBHgDXg8QujWmMrVn1-_V--v8OfL-8Xt3TW-My6kNlh4g141JoJ_-7Rn6Ovq8n75YX7z6ep6eXEz3zLO1JwZWQrulZOSWV43jWVc1oyLilXcWckrWnlauMJJV7laKCa4NU4Sx5pCqJrN0Pmjbz_WrXfWd0M2Ufc5tCbvdDJB_890YaPX6bumlFDBCzo5vHtyyOnb6GHQbQDrYzSdTyPo6Z2lIFJMCWfo5IV0m8bcTfdpRrgihaCETKrFo-pHiH73HIUS_a9IPRWpH4rUy49fHgD7C0J7krI</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Chen, Zhigeng</creator><creator>Bi, Sheng</creator><creator>Shan, Yi</creator><creator>Cui, Bixiao</creator><creator>Yang, Hongwei</creator><creator>Qi, Zhigang</creator><creator>Zhao, Zhilian</creator><creator>Han, Ying</creator><creator>Yan, Shaozhen</creator><creator>Lu, Jie</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0425-3921</orcidid><orcidid>https://orcid.org/0000-0002-1675-5606</orcidid><orcidid>https://orcid.org/0000-0003-0377-7424</orcidid></search><sort><creationdate>202404</creationdate><title>Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics</title><author>Chen, Zhigeng ; Bi, Sheng ; Shan, Yi ; Cui, Bixiao ; Yang, Hongwei ; Qi, Zhigang ; Zhao, Zhilian ; Han, Ying ; Yan, Shaozhen ; Lu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3439-3a8574e9d883c4bffc348b3476364dc84616e12d2d8d6db79374cad80d3f279b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Biomarkers</topic><topic>Cerebrospinal fluid</topic><topic>Cognitive ability</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>early diagnosis</topic><topic>Feature selection</topic><topic>Glucose</topic><topic>hippocampal radiomics</topic><topic>Hippocampus</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Original</topic><topic>Pathology</topic><topic>PET/MRI</topic><topic>Positron emission tomography</topic><topic>Radiomics</topic><topic>Regression analysis</topic><topic>Software</topic><topic>Spin labeling</topic><topic>Statistical analysis</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhigeng</creatorcontrib><creatorcontrib>Bi, Sheng</creatorcontrib><creatorcontrib>Shan, Yi</creatorcontrib><creatorcontrib>Cui, Bixiao</creatorcontrib><creatorcontrib>Yang, Hongwei</creatorcontrib><creatorcontrib>Qi, Zhigang</creatorcontrib><creatorcontrib>Zhao, Zhilian</creatorcontrib><creatorcontrib>Han, Ying</creatorcontrib><creatorcontrib>Yan, Shaozhen</creatorcontrib><creatorcontrib>Lu, Jie</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience &amp; therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhigeng</au><au>Bi, Sheng</au><au>Shan, Yi</au><au>Cui, Bixiao</au><au>Yang, Hongwei</au><au>Qi, Zhigang</au><au>Zhao, Zhilian</au><au>Han, Ying</au><au>Yan, Shaozhen</au><au>Lu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics</atitle><jtitle>CNS neuroscience &amp; therapeutics</jtitle><date>2024-04</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>e14539</spage><epage>n/a</epage><pages>e14539-n/a</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>Purpose This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD). Methods A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F‐fluorodeoxyglucose (18F‐FDG) PET, 3D arterial spin labeling (ASL), and high‐resolution T1‐weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad‐Score) of logistic regression models were evaluated from 5‐fold cross‐validation. Results The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single‐modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad‐Score differed significantly between the AD and HC (p &lt; 0.001), aMCI and HC (p &lt; 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests. Conclusion Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications. This study aimed to investigate multiparametric imaging of the hippocampal radiomics for early diagnosis of AD using simultaneous PET/MRI. Our findings demonstrated that multi‐dimensional imaging of the hippocampal radiomics benefits the identification of early AD (aMCI especially) and may provide a potential biomarker for clinical applications in AD.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38031997</pmid><doi>10.1111/cns.14539</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0425-3921</orcidid><orcidid>https://orcid.org/0000-0002-1675-5606</orcidid><orcidid>https://orcid.org/0000-0003-0377-7424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-5930
ispartof CNS neuroscience & therapeutics, 2024-04, Vol.30 (4), p.e14539-n/a
issn 1755-5930
1755-5949
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11017421
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alzheimer's disease
Biomarkers
Cerebrospinal fluid
Cognitive ability
Diagnosis
Disease
early diagnosis
Feature selection
Glucose
hippocampal radiomics
Hippocampus
Machine learning
Magnetic resonance imaging
Metabolism
Neurodegenerative diseases
Original
Pathology
PET/MRI
Positron emission tomography
Radiomics
Regression analysis
Software
Spin labeling
Statistical analysis
Tomography
title Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiparametric%20hippocampal%20signatures%20for%20early%20diagnosis%20of%20Alzheimer's%20disease%20using%2018F%E2%80%90FDG%20PET/MRI%20Radiomics&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Chen,%20Zhigeng&rft.date=2024-04&rft.volume=30&rft.issue=4&rft.spage=e14539&rft.epage=n/a&rft.pages=e14539-n/a&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/cns.14539&rft_dat=%3Cproquest_pubme%3E3049027100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049027100&rft_id=info:pmid/38031997&rfr_iscdi=true