Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics
Purpose This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD). Methods A total of 53 healthy control (HC) participants, 55 patients w...
Gespeichert in:
Veröffentlicht in: | CNS neuroscience & therapeutics 2024-04, Vol.30 (4), p.e14539-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e14539 |
container_title | CNS neuroscience & therapeutics |
container_volume | 30 |
creator | Chen, Zhigeng Bi, Sheng Shan, Yi Cui, Bixiao Yang, Hongwei Qi, Zhigang Zhao, Zhilian Han, Ying Yan, Shaozhen Lu, Jie |
description | Purpose
This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD).
Methods
A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F‐fluorodeoxyglucose (18F‐FDG) PET, 3D arterial spin labeling (ASL), and high‐resolution T1‐weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad‐Score) of logistic regression models were evaluated from 5‐fold cross‐validation.
Results
The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single‐modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad‐Score differed significantly between the AD and HC (p |
doi_str_mv | 10.1111/cns.14539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11017421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049027100</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3439-3a8574e9d883c4bffc348b3476364dc84616e12d2d8d6db79374cad80d3f279b3</originalsourceid><addsrcrecordid>eNpdUcFO3DAUtBAV0G0P_IElDvSyrB07sX1CaMtSJGgrSs-WYzu7Xjlx6pe02p76Cf3GfklTQEjlXd5IMxrNe4PQMSVndJqF7eCM8pKpPXRERVnOS8XV_jNm5BC9BtgSUhVSyQN0yCRhVClxhOB2jEPoTTatH3KweBP6PlnT9iZiCOvODGP2gJuUsTc57rALZt0lCIBTgy_iz40Prc-nMBHgDXg8QujWmMrVn1-_V--v8OfL-8Xt3TW-My6kNlh4g141JoJ_-7Rn6Ovq8n75YX7z6ep6eXEz3zLO1JwZWQrulZOSWV43jWVc1oyLilXcWckrWnlauMJJV7laKCa4NU4Sx5pCqJrN0Pmjbz_WrXfWd0M2Ufc5tCbvdDJB_890YaPX6bumlFDBCzo5vHtyyOnb6GHQbQDrYzSdTyPo6Z2lIFJMCWfo5IV0m8bcTfdpRrgihaCETKrFo-pHiH73HIUS_a9IPRWpH4rUy49fHgD7C0J7krI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049027100</pqid></control><display><type>article</type><title>Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chen, Zhigeng ; Bi, Sheng ; Shan, Yi ; Cui, Bixiao ; Yang, Hongwei ; Qi, Zhigang ; Zhao, Zhilian ; Han, Ying ; Yan, Shaozhen ; Lu, Jie</creator><creatorcontrib>Chen, Zhigeng ; Bi, Sheng ; Shan, Yi ; Cui, Bixiao ; Yang, Hongwei ; Qi, Zhigang ; Zhao, Zhilian ; Han, Ying ; Yan, Shaozhen ; Lu, Jie</creatorcontrib><description>Purpose
This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD).
Methods
A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F‐fluorodeoxyglucose (18F‐FDG) PET, 3D arterial spin labeling (ASL), and high‐resolution T1‐weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad‐Score) of logistic regression models were evaluated from 5‐fold cross‐validation.
Results
The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single‐modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad‐Score differed significantly between the AD and HC (p < 0.001), aMCI and HC (p < 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests.
Conclusion
Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications.
This study aimed to investigate multiparametric imaging of the hippocampal radiomics for early diagnosis of AD using simultaneous PET/MRI. Our findings demonstrated that multi‐dimensional imaging of the hippocampal radiomics benefits the identification of early AD (aMCI especially) and may provide a potential biomarker for clinical applications in AD.</description><identifier>ISSN: 1755-5930</identifier><identifier>EISSN: 1755-5949</identifier><identifier>DOI: 10.1111/cns.14539</identifier><identifier>PMID: 38031997</identifier><language>eng</language><publisher>Oxford: John Wiley & Sons, Inc</publisher><subject>Alzheimer's disease ; Biomarkers ; Cerebrospinal fluid ; Cognitive ability ; Diagnosis ; Disease ; early diagnosis ; Feature selection ; Glucose ; hippocampal radiomics ; Hippocampus ; Machine learning ; Magnetic resonance imaging ; Metabolism ; Neurodegenerative diseases ; Original ; Pathology ; PET/MRI ; Positron emission tomography ; Radiomics ; Regression analysis ; Software ; Spin labeling ; Statistical analysis ; Tomography</subject><ispartof>CNS neuroscience & therapeutics, 2024-04, Vol.30 (4), p.e14539-n/a</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0425-3921 ; 0000-0002-1675-5606 ; 0000-0003-0377-7424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017421/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017421/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids></links><search><creatorcontrib>Chen, Zhigeng</creatorcontrib><creatorcontrib>Bi, Sheng</creatorcontrib><creatorcontrib>Shan, Yi</creatorcontrib><creatorcontrib>Cui, Bixiao</creatorcontrib><creatorcontrib>Yang, Hongwei</creatorcontrib><creatorcontrib>Qi, Zhigang</creatorcontrib><creatorcontrib>Zhao, Zhilian</creatorcontrib><creatorcontrib>Han, Ying</creatorcontrib><creatorcontrib>Yan, Shaozhen</creatorcontrib><creatorcontrib>Lu, Jie</creatorcontrib><title>Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics</title><title>CNS neuroscience & therapeutics</title><description>Purpose
This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD).
Methods
A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F‐fluorodeoxyglucose (18F‐FDG) PET, 3D arterial spin labeling (ASL), and high‐resolution T1‐weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad‐Score) of logistic regression models were evaluated from 5‐fold cross‐validation.
Results
The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single‐modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad‐Score differed significantly between the AD and HC (p < 0.001), aMCI and HC (p < 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests.
Conclusion
Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications.
This study aimed to investigate multiparametric imaging of the hippocampal radiomics for early diagnosis of AD using simultaneous PET/MRI. Our findings demonstrated that multi‐dimensional imaging of the hippocampal radiomics benefits the identification of early AD (aMCI especially) and may provide a potential biomarker for clinical applications in AD.</description><subject>Alzheimer's disease</subject><subject>Biomarkers</subject><subject>Cerebrospinal fluid</subject><subject>Cognitive ability</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>early diagnosis</subject><subject>Feature selection</subject><subject>Glucose</subject><subject>hippocampal radiomics</subject><subject>Hippocampus</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Original</subject><subject>Pathology</subject><subject>PET/MRI</subject><subject>Positron emission tomography</subject><subject>Radiomics</subject><subject>Regression analysis</subject><subject>Software</subject><subject>Spin labeling</subject><subject>Statistical analysis</subject><subject>Tomography</subject><issn>1755-5930</issn><issn>1755-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdUcFO3DAUtBAV0G0P_IElDvSyrB07sX1CaMtSJGgrSs-WYzu7Xjlx6pe02p76Cf3GfklTQEjlXd5IMxrNe4PQMSVndJqF7eCM8pKpPXRERVnOS8XV_jNm5BC9BtgSUhVSyQN0yCRhVClxhOB2jEPoTTatH3KweBP6PlnT9iZiCOvODGP2gJuUsTc57rALZt0lCIBTgy_iz40Prc-nMBHgDXg8QujWmMrVn1-_V--v8OfL-8Xt3TW-My6kNlh4g141JoJ_-7Rn6Ovq8n75YX7z6ep6eXEz3zLO1JwZWQrulZOSWV43jWVc1oyLilXcWckrWnlauMJJV7laKCa4NU4Sx5pCqJrN0Pmjbz_WrXfWd0M2Ufc5tCbvdDJB_890YaPX6bumlFDBCzo5vHtyyOnb6GHQbQDrYzSdTyPo6Z2lIFJMCWfo5IV0m8bcTfdpRrgihaCETKrFo-pHiH73HIUS_a9IPRWpH4rUy49fHgD7C0J7krI</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Chen, Zhigeng</creator><creator>Bi, Sheng</creator><creator>Shan, Yi</creator><creator>Cui, Bixiao</creator><creator>Yang, Hongwei</creator><creator>Qi, Zhigang</creator><creator>Zhao, Zhilian</creator><creator>Han, Ying</creator><creator>Yan, Shaozhen</creator><creator>Lu, Jie</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0425-3921</orcidid><orcidid>https://orcid.org/0000-0002-1675-5606</orcidid><orcidid>https://orcid.org/0000-0003-0377-7424</orcidid></search><sort><creationdate>202404</creationdate><title>Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics</title><author>Chen, Zhigeng ; Bi, Sheng ; Shan, Yi ; Cui, Bixiao ; Yang, Hongwei ; Qi, Zhigang ; Zhao, Zhilian ; Han, Ying ; Yan, Shaozhen ; Lu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3439-3a8574e9d883c4bffc348b3476364dc84616e12d2d8d6db79374cad80d3f279b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Biomarkers</topic><topic>Cerebrospinal fluid</topic><topic>Cognitive ability</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>early diagnosis</topic><topic>Feature selection</topic><topic>Glucose</topic><topic>hippocampal radiomics</topic><topic>Hippocampus</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Original</topic><topic>Pathology</topic><topic>PET/MRI</topic><topic>Positron emission tomography</topic><topic>Radiomics</topic><topic>Regression analysis</topic><topic>Software</topic><topic>Spin labeling</topic><topic>Statistical analysis</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhigeng</creatorcontrib><creatorcontrib>Bi, Sheng</creatorcontrib><creatorcontrib>Shan, Yi</creatorcontrib><creatorcontrib>Cui, Bixiao</creatorcontrib><creatorcontrib>Yang, Hongwei</creatorcontrib><creatorcontrib>Qi, Zhigang</creatorcontrib><creatorcontrib>Zhao, Zhilian</creatorcontrib><creatorcontrib>Han, Ying</creatorcontrib><creatorcontrib>Yan, Shaozhen</creatorcontrib><creatorcontrib>Lu, Jie</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>CNS neuroscience & therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhigeng</au><au>Bi, Sheng</au><au>Shan, Yi</au><au>Cui, Bixiao</au><au>Yang, Hongwei</au><au>Qi, Zhigang</au><au>Zhao, Zhilian</au><au>Han, Ying</au><au>Yan, Shaozhen</au><au>Lu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics</atitle><jtitle>CNS neuroscience & therapeutics</jtitle><date>2024-04</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>e14539</spage><epage>n/a</epage><pages>e14539-n/a</pages><issn>1755-5930</issn><eissn>1755-5949</eissn><abstract>Purpose
This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD).
Methods
A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F‐fluorodeoxyglucose (18F‐FDG) PET, 3D arterial spin labeling (ASL), and high‐resolution T1‐weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad‐Score) of logistic regression models were evaluated from 5‐fold cross‐validation.
Results
The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single‐modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad‐Score differed significantly between the AD and HC (p < 0.001), aMCI and HC (p < 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests.
Conclusion
Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications.
This study aimed to investigate multiparametric imaging of the hippocampal radiomics for early diagnosis of AD using simultaneous PET/MRI. Our findings demonstrated that multi‐dimensional imaging of the hippocampal radiomics benefits the identification of early AD (aMCI especially) and may provide a potential biomarker for clinical applications in AD.</abstract><cop>Oxford</cop><pub>John Wiley & Sons, Inc</pub><pmid>38031997</pmid><doi>10.1111/cns.14539</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0425-3921</orcidid><orcidid>https://orcid.org/0000-0002-1675-5606</orcidid><orcidid>https://orcid.org/0000-0003-0377-7424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-5930 |
ispartof | CNS neuroscience & therapeutics, 2024-04, Vol.30 (4), p.e14539-n/a |
issn | 1755-5930 1755-5949 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11017421 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alzheimer's disease Biomarkers Cerebrospinal fluid Cognitive ability Diagnosis Disease early diagnosis Feature selection Glucose hippocampal radiomics Hippocampus Machine learning Magnetic resonance imaging Metabolism Neurodegenerative diseases Original Pathology PET/MRI Positron emission tomography Radiomics Regression analysis Software Spin labeling Statistical analysis Tomography |
title | Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F‐FDG PET/MRI Radiomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiparametric%20hippocampal%20signatures%20for%20early%20diagnosis%20of%20Alzheimer's%20disease%20using%2018F%E2%80%90FDG%20PET/MRI%20Radiomics&rft.jtitle=CNS%20neuroscience%20&%20therapeutics&rft.au=Chen,%20Zhigeng&rft.date=2024-04&rft.volume=30&rft.issue=4&rft.spage=e14539&rft.epage=n/a&rft.pages=e14539-n/a&rft.issn=1755-5930&rft.eissn=1755-5949&rft_id=info:doi/10.1111/cns.14539&rft_dat=%3Cproquest_pubme%3E3049027100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049027100&rft_id=info:pmid/38031997&rfr_iscdi=true |